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1 Introduction

The UK sugar beet industry involves numerous organisationspmpanies and indi-
viduals operating from di erent locations and with di erent objectives and incen-
tives. The aim of the Study Group was to understand the procsswvell enough to
model it and to propose ways in which these organisations cpanies and individ-
uals (collectively described as players) could exchangédmmation and interact, in

ways that would result in greater e ciency, and to the bene t of everyone involved
in the process. Much of what was done relates speci cally tagar beet, but there
are other crops where similar issues arise | though of courseach crop will have
its own idiosyncrasies.

1.1 Background and scope

(1.1.1) We aim to describe here the way the UK sugar beet indugtoperates at
present. It is presented diagrammatically in Figure 1. In dasection 1.2
we shall describe the perceived ine ciencies in the preseaystem, and in
subsection 1.3 the elements of the system that are most egsihangeable,
and so could be used as controls or incentives.

(1.1.2) Sugar beet is grown mainly in eastern England, and ¢he are perhaps
3000 growers, with widely di ering acreages. The beet can li&ed from
the elds (i.e. harvested) from mid-September onwards. The beet cannot
be lifted if the soil is too wet, or if the soil is baked too hard The beet
should be lifted before the rst frost. When the beet is liftel it is stored
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(1.1.3)

(1.1.4)

Figure 1. Schematic of the sugar beet production chain.

on a concrete pad on the farm. If there is risk of frost, the bewill need
to be stored covered.

From the pads on the farms, the beet is taken to a progging plant in
30-tonne trucks operated by hauliers. The distance of a grewfrom the
processing plant can be up to 50 miles, with an average of 28.héfe
are about 100 haulier companies, including large rms like BL, small
local haulage companies, and some trucks owned by individwowers.
So some have just 1 truck and some have hundreds. The truck\is can
work 9 hours a day, or 10 hours on at most 2 days a week. A largeuliar
will have a number of drivers so its trucks may be able to operafor more
hours a day than a truck belonging to a small company or an inddual
grower.

The 5 processing plants in the UK are operated by Br#gh Sugar. The
beet is unloaded from the trucks onto a large concrete pad (#te plant
in Bury St. Edmunds, the pad is 150m by 40 m and the stack can beu
to 6 m high). The plant can process about 800 truckloads a dagnd the
storage pad can hold about 1400 truckloads. The processimgpacity of
the plant varies by about 10% from day to day for various unpredictable
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(1.1.5)

(1.1.6)

(1.1.7)

1.2

(1.2.1)

reasons. From the stack, the beet is pushed by bulldozers oné water
channel that sweeps it along to the processing plant itselk is processed
into syrup and then dry sugar. The beet is sampled to assess gugar
content when it arrives at the plant.

There used to be more processing plants, but the reztion to 5 has not

been accompanied by a proportional increase in capacity deetprocessing
season has been extended, and now runs to February. The whedason,
from mid-September when lifting starts, through to Februay when all the

beet has been processed, is called the Campaign. The procgsplants

operate 24 hours a day during the campaign.

At present the initial planning of the Campaign is udertaken by British

Sugar, and is at the 1-week granularity. So they plan that thdeet of
certain growers will be lifted in particular weeks, and be lmught to a

particular plant in particular weeks. They also o er a centalized haulage
plan to the growers: in the centralized plan, a grower contcas to provide a
certain tonnage of beet at his farm to be ready in a certain wkeThere are
20 hauliers who supply services to British Sugar as part ofithcentrally-

organised system. Alternatively, a grower can choose to ange his own
haulage, in which case British Sugar pay him a certain allomae per
ton-mile for the transport, based on the shortest road distece from his
farm to the processing plant. He then uses his own truck or makdis
own arrangements with a haulier or another grower who has auttk. His
contract then is to provide a certain tonnage at the plant in he speci ed
week.

The payment from British Sugar to the grower is basedn the sugar
content of his crop. When it arrives at the plant, a sample isaken for
analysis and the weight of sugar per weight of beet is asseks€he sugar
content varies depending on the beet variety, the soil, anché weather
conditions during the growing season | sunny days and rain atight are
the best. After the end of the growing season (mid-Septembdhe sugar
content of the beet in the ground is constant. The sugar comecan vary
between 15% and 21%. When it is lifted and is waiting on the paat the

farm, sugar content is lost, at a rate of about 0.1% per day. Wém beet is
pushed around by the bulldozers at the processing plant, sargcontent is
also lost | anything that damages the beet loses sugar contdn The rate

paid by British Sugar to the growers rises steadily during th Campaign
period and is about 15% greater in February than it was as thdast of

the campaign in mid-September.

Ine ciencies

The perceived ine ciencies in the present system arillustrated diagram-
matically in Figure 2.
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Figure 2. Perceived ine ciencies in the present process.

(2.2.2) At the processing plant, one of the ine ciencies thacan arise is if the
beet backlog builds up too much | i.e. the amount of beet in the stack
awaiting processing. The sugar loss from pushing this beatand with
the bulldozers is kept smallest if this backlog is kept small

(1.2.3) For the growers, one of the ine ciencies is the lossf sugar while their
beet is waiting on the pad at their farm: the grower wants thenterval
between lifting the beet and processing it to be small.

(1.2.4) For the hauliers, one of the ine ciencies is the joureys they make with
an empty truck at the beginning of a day to their rst farm, and at the
end of the day from the plant back to the haulage company.

1.3 Possible changes

(2.3.1) One of the possible changes that could be implemediten the system
would be to alter the price paid by the processing plant to thgrowers.
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1.4 Literature

(1.4.1) A study of transport e ciency in the sugar beet indugry was prepared in
2009 [1]. A study of coupled supply planning and logistics thi reference
to the sugar cane industry in South Africa is published as [2]This has
quite similar aims to our project.

(1.4.2) We nd some very helpful literature, studying sugaicane industry in Aus-
tralia and South Africa. They study various optimisation prdlems aris-
ing from di erent aspects of the industry and implement somsimulation
tools. Although the majority of the previous study only focuson a single
aspect and do not integrate di erent factors into a single amework, some
analysis are well worthy of mentioning: on a short term horan, [7] studies
the the optimisation of harvest schedules, accounting fohé geographical
and temporal di erences in sugar yield; [9] investigates & coordination
between transportation and harvest. On a mid-term horizonworks like
[8] study sugar production maximization in the context of yarly planning.

(1.4.3) On the other hand, a study of coupled supply planningnd logistics with
reference to the sugar cane industry in South Africa is pubhed [2]. This
has quite similar aims to our project. Their study examines aitiple-level
planning and adopts a two step simulation to integrate seasal planning
with the short-term logistic. It introduces two simulation tools, MAGI for
seasonal supply planning and ARENA for daily supply, to invegjate the
e ects of various factors that could potentially impact thecampaign, in-
cluding harvesting mechanism, vehicles, milling seasomdsensitivity to
risk. Based on the simulation results their study discussesitcomes un-
der di erent scenarios, which can facilitate negotiationdetween di erent
parties.

(1.4.4) Another study, of the sugar cane industry in South Ameea, is in [3] and
uses discrete event simulation.

[Christoph, if you write a summary of that it could go here.]

(1.4.5) Some of the possibly-relevant mathematical litetare includes that on
games with exhaustible resources, for instance the work obf Hosking
[4]. This could perhaps be developed with say 2 growers, orese to the
plant and one far away, so they have di erent transport costsand with
the plant as another player, having the aim of keeping a stegdn ow of
beet.

2 Strategy
In this report we rst consider various elements of the prol@m in some isolation, and

then consider the issues in putting them together. We rst decribe the economic
models considered, then stochastic models that study theexts of the uncertainties

5
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in the system, then some scheduling models that are intendéal achieve some of
the potential e ciencies better than the current process.

3 Economic models

3.1 Pricing models

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

If the price paid by the processing plant to the growe can be chosen in
a way that makes the growers neutral between di erent timesof lifting
their beet, then that should enable any possible e ciencies the transport
process to be taken advantage of more easily.

One of the ingredients in modelling this is that it i9ene cial to the grower
to have his beet lifted early, since he can then reuse that @&l preparing
it for whatever its next crop is to be. There is therefore a ulity function
to the grower of lifting the beet at timet, and it is a decreasing function
of t. All the beet needs to be lifted by the time of the rst frost, soa
simple form of the utility function would be

U(t) = Upmax(l t=Tjog;0); (1)

for a suitable constantU, and with t measured from the start of the
campaign period.

One way of incorporating this insight into a simplied economic model is
as follows. In this model, the growers are aggregated togeth and also
the beet awaiting processing is aggregated together. Alsoettimodel as
written here is deterministic, and would need modi cationso allow for
stochastic e ects.

For the growers, we leg(t) denote their combined production rate, and
p(t) be the price paid by the plant to the grower. Then the payo tothe
grower is modelled as

Z
p(t)a(t)exp( rt) cot)dt: (2)

In this, the discount factor exp( rt) is representing the fact that the
grower prefers to have his beet collected early. The constamrepresents
the growers' cost per tonne. The amount of beet initially is@ne xq, the
total crop, and the lifting process is represented bgx=dt = q(t) with

the constraints that x and g must not go negative.

The amount of beet in storage is denoted b@(t) so dQ=dt = q q,
whereq is the rate at which beet is taken from the storage to the factg.
Naturally, Q and g must also not go negative.
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(3.1.6) The payo function to the plant is modelled in the fom
Z 1
p(t)a(t)  f(Q(1)) + q(t)P dt: 3)
0

Here the rst term is the price the plant is paying to the growes. The
second models the cost represented by the amount of beet inrsige some-
where in the system, sd is an increasing function ofQ. The third term
represents the gain for producing sugar, $®is the current price for sugar.

(3.1.7) Solving this model as a game for the growers and plathten consists in
the growers choosingj(t) to maximize their payo , and the plant choosing
p(t) and q(t) to maximize its payo .

(3.1.8) For the growers, the solution is by introducing theivalue function from
any point, V(x(t);t), and then the result is that they choosey(t) to max-

imize Qv
ORI = U} (4)

(3.1.9) For the plant, the optimal point over q

3.2 Cooperative games

(3.2.1) A cooperative game is one where the cooperation ogthlayers in a coali-
tion generates surplus value. There is then the theory of Shlay value
that determines a fair way to distribute that value to the patners in a
coalition. Each player receives a value that is the averagaig in value
that adding him brings, if the coalition is formed sequentidy in a random
order.

(3.2.2) The Shapley-Gale algorithm is a matching algorithmvhere the partici-
pants have expressed preferences among the possible ogtiavailable to
them. It could potentially be used to implement the matchingof growers
to time-slots in the hauliers schedule.

(3.2.3) There are 3 elements to the problem,

(a) maximizing the surplus that the process generates (soishinvolves
minimizing sugar loss on the pads in the elds, minimizing &ns-
port costs, and minimizing sugar loss at the processing pknalso
the surplus is a random variable, so some scalar function hisbe
chosen, €.g.the mean, the median, the probability of it exceeding
some threshold);

(b) allocating the actual surplus to the participants fairly;

(c) transparency | assuring the participants that the process is treating
them fairly.
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(3.2.4)

(3.2.5)

If objective 1 can be solved, then it results in a sulgs that could be
allocated among the participants. This surplus then need®tbe shared
among the participants in a way that is generally perceivedotbe fair.

It was suggested that a certain proportion of the pagents should be
transferred directly from the plant to the growers and from lhe growers to
the hauliers, as at present, with a certain amount kept bacKThis retained
portion of the collective surplus could then be distributedat the end of
the campaign period, in a way that re ects each player's conbution to

achieving the maximum possible surplus, or penalizes thaontribution

to failing to achieve the maximum surplus.

4  Stochastic models

4.1 \Weather correlation

(4.1.1)

If we plan to collect the beet in a certain order, and &wish to keep the
supply of beet to the processing plant robust to the e ects ofveather in
delaying the delivery schedule, then it is natural to expedhat we should
collect from separated areas at the same time: if the plan veeto involve
collecting from growers in the same area at the same time, thé is not

robust to bad weather in that area.

4.2 Summary

(4.2.1)

The delivery date of di erent growers is in uenced ¥ the weather. As-
suming that the weather hits all growers in a certain regionimultaneously
and similarly, we analyse how one should sort the growers tater produc-
tion's uctuation. To do so, we analyse a stylised model in wich growers
are divided into two regions, each with a local weather compent. The
objective is to optimally mix the growers of these two regiansuch that the
expected excess harvest is minimized. We start by descrigithe model
in detail, then we describe the simulation and we nally corlade.

4.3 Description of Model

(4.3.1)

We assume that growers are split into two regions thavill be processed
over two periods. More speci cally, we havé&Ng growers in the east and
Nw growers in the west. Further, we assume that there is only orn@o-
cessing plant, which is able to process growers' output per period. Let

X be the percentage of growers in the east scheduled to be psssal in the
rst period and let y the percentage of growers in the west also scheduled
to be processed in the rst period.
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(4.3.2) If a grower is scheduled to deliver in a certain pedo he may not |
depending on the weather | be able to lift his sugar beet whenntended.
The WeatherTiR;P at the location of groweri in regionR 2 f E;Wg and
period P is assumed to be stochastic and in our case modelled as the
weighted average of two normally distributed random varides:

TR = ENEP TR ®)
whereNR?P and NP, are assumed to be independent normally distributed.
Notice this implies that TiR;P is again normally distributed. The parameter

R measures the correlation between the weather within a regioFurther
we assume that the grower is not able to lift if his local weather is below
a certain thresholdcyesn - This implies that the total number of growers
processed in period one is given by

g L
= . + : .
Gl (TE t<c tresh ) (TQN t<c tresh )" (6)
k=1 k=1

(4.3.3) Inthe second period, all growers which could not beqressed in the rst
period (there are G; C)* of them) are processed and all other growers
have another chance to lift their crops. The total number ofgyar beet
which could be processed in the second period is thereforeegi by,

G2=(Gy C)'+ (7)
bw EC bww c
(TkE; ! Ctresh ) (TkE; 2<Ctresh ) + (TQN; ! Ctresh ) (T;yv;2<ctresh )+
k=1 k=1
(8)
Xe Xw
(TkE; ?<c tresh ) + (TQN; <c tresh ): (9)
dxN g e dxN w e
(10)

An ine ciency occurs whenever sugar beet is lifted but cannobe pro-
cessed on the same period.

(4.3.4) Therefore, we propose to minimize the following obgtive:
V(xy)= E[(G1 C)' (G2 C)'] (11)

The two terms represent the excess amount of lifted beet ovdre process-
ing capacity in the rst and second period respectively.

4.4 Description of Simulation

(4.4.1) We evaluate the functionV using a Monte-Carlo simulation with 1000
iterations. To ensure comparability, we x a seed for all simlations.

9
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The parameters in our simulation are given in the followingable. The
parameter cyesh IS chosen such that the probability to lift if scheduled is
90 %. The capacity is chosen in such a way that it matches the macted
number of lifted beet. To test for robustness, all results arreported for
a low correlation and a high correlation regime.

Name Parameters 1| Parameters 2
Nw 50 50
Ng 50 50
W 0.2 0.9
E 0.2 0.9
C 45 45
P(W,X" < Cyesn) 0.1 0.1

Table 1: This table shows the parameters used in the simulati.

4.5 Simulation Results and Interpretation

(4.5.1)

(4.5.2)

(4.5.3)

Figures 1 and 2 show heat maps of the value functiorr fi erent strate-
gies. Since the color in the heat maps is mainly arranged bydis, we can
infer that the absolute number farmers, which is to be procsed in the
rst week, should be constant. In the case of large correlatn, it seems
to be optimal to schedule 45 growers to lift, such that all béen the rst
period can always be processed. In the case of low correlatiove nd
that 50 growers in the rst period are optimal, such that the epected
number of growers is equal to the capacity of the processinapt.

Further, since the heat map is darker towards the mdle, we can infer
that it is better to have an equal amount of growers from the e and
west scheduled for the rst period, compared to a polarizedht.

To gain a better understanding of the underlying méanic, gures 3 and
4 show the distribution of lifted beet for the di erent regimes. The rst
thing to notice is that in the high correlation regime, most bthe outcomes
correspond to all scheduled growers lifting the beet. In thHew correlation
regime, the distribution is centered around its mean. This fght explain
the optimal amount of growers to be processed in every weekn thoth
regimes, scheduling growers from di erent regions reduct® tail of the
distribution. The implied reduction in risk makes it optima to diversify
the regions within a given period.

4.6 Conclusion

(4.6.1)

We have analyzed how to optimally schedule a numbefrsugar beet grow-
ers, which are in uenced by regional e ects, to lift their bet in order to

10
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Figure 1. The gure shows a heat map of the value functioV for the rst set
of parameter values. The axis show the proportion in the eagk) and west (y)
respectively. A value in the red spectrum corresponds to awer value function.

be processed by a plant with limited capacity. Two di erent egimes were
considered. In the case of strong comovement within a regjoh seems
optimal to schedule a number of growers equal to the capacityn the
case of weak comovement, it seems to be better to schedule anber of
growers such that the expected number of lifts is equal to theapacity. In
any case, better results seemed to be achieved by schedulingwers from
di erent regions within a given period.

4.7 Markov process model

(4.7.1) The collecting and transport and processing of theelet to minimize sugar
loss could be considered as a random process | the randomnespre-
senting all the uncertainties in the system, including the wather but not
limited to that. If the random process is modelled as a Markoprocess
then one way of thinking of the aims would be as minimizing saninte-
grated cost function that is the expected cost integrated av the Cam-

11
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=l

Figure 2: The gure shows a heat map of the value functioW for the second set
of parameter values. The axis show the proportion in the eagk) and west (y)
respectively. A value in the red spectrum corresponds to awer value function.

@x=1;y=0 (b) x=0:5;y=0:5

Figure 3: Distribution of G; with correlation & = W =0:2 for di erent mixtures
of east and west population.

paign period, y

Ex X @) dt ; (12)
0

12
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@x=1;y=0 (b) x=0:5;y=0:5

Figure 4: Distribution of G; with correlation £ = W =0:9 for di erent mixtures
of east and west population.

(4.7.2)

(4.7.3)

(4.7.4)

(4.7.5)

where X (t) is the underlying Markov process, and (X) is the cost per
unit time incurred when the state isX. We now describe the way that we
implemented this approach in a simple case.

We model the process using a nite state, continuousme Markov chain
in order to include random processes a ecting the system, mgrated by
individuals changing their plans and decisions due to, foxample but not
limited to, the weather.

We considered a simple case where there are two farfasm A and farm B,
one processing plant, one transport system, and one elevatiVe assume
each farm produces one unit of beet and that multiple farms wing for
transport incurs a storage cost. We assume that the transpiosystem can
transport just one unit of beet at a time. We assume additiory that the
processing plant is at maximal capacity with one unit of beetand that
any additional units of beet over this one unit incur a storag cost.

Therefore we consider a 3 dimensional state spage, B P, with one
dimension for each farm and a third dimension for the proceasg plant.
Each dimension can be in one of three states. For the farms Heeare;

Beets growing (state 0),
Beets ready for transport (state 1),
Beets left the farm (state 2).

For the processing plants these are;

Operating under capacity (state 0),
Operating at capacity (state 1),
Operating over capacity, needing to store (state 2).

In total there are 27 possible states this system cdre in, but some are

13
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Figure 5: The state spaceS, and the acceptable transitions

not permitted. For example,f0;0; 2g (which represents both farms with
beets growing and plant operating over capacity) is not a pertted state
as we cannot have the processing plant working over capacgyior to any
beets leaving the farms. We move between the permitted 15 &#a with
the transitions given by gure 5. We assign a rate, ; to each move.

(4.7.6) One way of thinking of the aims in this context would b as minimizing
some integrated cost function that is the expected cost imeated over the
Campaign period. We assign a cost,, to each state and this can include
a penalty for being in a wasteful or ine cient state. f in state i is the cost
per unit time that the chain incurs by remaining in this state In this way
the cost function should force the system to avoid paths whicinclude
higher cost states. From this approach we can nd a set of ragewhich
minimise the integrated cost function, indicating the rats that would
lead to the system with smallest cost. The ratio of the two optnum rates
leaving the same state indicates which direction in the statdiagram will
be favoured, indicating the preferred method to minimise #acost. A more
detailed explanation of the technical aspects is given in ¢hAppendix.

(4.7.7) With the tools just presented, the expected value ahis cost can be
estimated as a function of the parametersi.€. the transition rates and
the cost function). In principle, one could simply minimise¢he expected
cost with respect to the parameters, but this would gives ushe trivial
result that the rates should be as large as possibleg if all the rates are
large enough, everything happens so quickly that the chaingurs almost
no cost, regardless of the states it visits). Therefore, weimmise the

14
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(4.7.8)

(4.7.9)

(4.7.10)

-

OocooocoocoocoocoocoocoocoocoooooM

(4.7.11)

(4.7.12)

following \overall" cost function, rather than just the expected cost:

X
E[ ]X(0)=0]+ i

In this scenario, large rates are penalised becaukey have a large con-
tribution in the \overall" cost. Bearing in mind our problem this is also
a fair assumption, since large rates might represent, forstance, a faster
processing rate at the plant which will be more expensive.

In order to simplify the model su ciently so we can vsualise the solutions,
we initially consider just a few di erent rates; ; the rate at which the
beets become ready on all of the farms,; the rate at which the beets get
delivered from all of the farms to the processing plant, and; the rate
the processing plant processes beets. We assign the sameafds to each
state, except for states we have identi ed as wasteful stag¢o be in. These
aref 1;1; 0g; the state where all farms have beets awaiting transportatn
and becoming less sugar-rich, anf?; 2; 2g; the state where the processing
plant is operating at over-capacity so more beets wait in stage there.
We assign these states the cost 1 p. Additionally, the states f 2;0; Og,
f2;1,0g, f0;2;0g, f1;2;0g re ect the processing plant operating under
capacity and these will also be penalised, but with penalty; <p.

In this simple model the allowed transitions are fly specied by the
following generator matrix:

-
-

o
o

0 0 0 0 0 0 0 0
1 2 0 2 1 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 0 0 0 0 0 0
0 0 1 3 0 0 3 1 0 0 0 0 0
0 0 0 2 2 0 0 2 2 0 0 0 0
0 0 0 0 1 3 0 0 1 3 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 2 3 0 0 3 2 0
0 0 0 0 0 0 0 2 3 0 0 2 3
0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 o] 0 0 0 0 0 0 0 2 0
0 0 o] 0 0 0 0 0 0 0 0 3
0 0 o] 0 0 0 0 0 0 0 0 0
0 0 o] 0 0 0 0 0 0 0 0 0
0 0 o] 0 0 0 0 0 0 0 0 0

From this simple scenario we can generate plotsdikhat depicted in g-
ure 6. This tells us that in the optimal case once a farm is regdto

transport its beets this transportation should occur priorto other farms
becoming ready (» 4 ;).

We then add one extra level of complexity to this mad by considering
5 dierent rates; 1.4, 1. the rate at which the beets become ready on
each of the farms, ,.4, 2 the rate at which the beets get delivered from
each of the farms to the processing plant, ands; as before. This takes
into account, for example, the di erences in distances beten farms and
the processing plant. This can give results like that depied in gure 7.
This tells us, among other things, that one farm should have slower rate
of production than the other ( 25 < 1= ,4).
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Figure 6: The contour plot of the overall cost function, withxed parameters 3 =1,
p =100, p; = 10.

Figure 7: The contour plot of the overall cost function, with xed parameters
1A= 2a= 3=1, p=100, p =10.

16



Agrifood Campaign Planning ESGI100

4.8 Limitations and Extensions

(4.8.1) From this simple model, we have seen that some gereyaalitative fea-
tures of the system can be described. A step towards a destiop closer to
reality would require us to de ne a Markov process on a largetate space,
including more farms, transportation companies and procgisg plants.
Due to time limitations, this larger model has not been impimented but
the method would extend very easily. For very large state spas, the
generator matrix would be sparse (due to the limited amountfaallowed
transitions) and a sparse linear solver could be used to olmahe solution.

(4.8.2) Due to its simplicity, however, this model has somentitations as well.
In particular, it is not meant to provide a comparison to realdata or
to estimate the monetary cost of the Campaign. Moreover, th®larkov
nature of this model is meant to take into account stochastie ects (such
as weather conditions) which might play a relevant role in tb Campaign,
but the validity of the assumption of a Markovian process wdd need a
deeper assessment.

5 Scheduling models

Although the aim of the Study Group is not to produce scheduligg methods, we did
consider that scheduling methods having the required e ciecy measures as part
of the cost function would be one of the ingredients needed amy nal system.

The scheduling problem we would like to address concerns tbedering of beet
transport from numerous farms to a single beet processingapt in order to optimise
the processing rate whilst ensuring that the time beets areft to accumulate outside
the plant is kept to a minimum.

5.1 Problem Outline

(5.1.1) Consider a single beet processing plant surroundbyg N farms F; each
located at a distanced; from the beet plant. The quantity of beet in tons
at each farm isQ; and the number of trucks working moving between to
that farm and the plant at time t; is N;. We assume that all the trucks
travel at the same speed and have the same capacity of; tons. So the
rate Ri(t;) at which farm F, can deliver to the plant is given by

N; Qv 1.

Rk(t) = 20, ton's

(13)

The 2 in the denominator is due to the fact that the trucks mustmake a
round trips, each of which is twiced;. We also assume that only a portion
of all the farms can operate for 24 hours. Finally we assumeaththe
beet plant can process beets at a constant rate B tons per hour for 24
hours.
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(5.1.2) We shall consider one day and aim to deduce close teetbptimal order-
ing of beet collection from the farms in order to optimise theate of beet
processing at the plant whilst minimising the accumulatiorof beets out-
side the plant. In order to do this we shall decide upon a prefed (near
optimal) pro le for the rate of beet delivery at the plant throughout the
day based on heurisitic arguments. Then we shall employ a #aquares
approach which shall order the deliveries from the farms inrder to get
at close to this pro le as possible.

5.2 Beet delivery rate

(5.2.1) The preferred beet delivery rate pro le can be chose Here we employ
some heuristic arguments to choose an example pro le. We agizen that
some, but not all farms, operate for the entire 24 hour periodVe suppose
that there are not enough 24 hour farms to achieve the beet messing
rate Rp so we require an accumulation of beets before the end of the
working day so that the plant can achieverp at night. This suggests that
a pro le as shown in Figure 8 would be sensible.

Rate

0 Day Night Time (hours)

Figure 8: Solid line is the proposed pro le for rate of beet @val at plant. Dashed
line is the processing rate of the plant.

5.3 Re-scheduling

(5.3.1) We can assume our original schedule, in which eachuhar delivers beet to
the plant at a constant rate throughout a period of lengthl' time intervals
(of some desired granularity), to be of the form

Ri(t1) Ra(t1) i@ Ry (tl) f (tl)
M = % letz) sztz) 0 Ry (tz) § % g % f(t2) §
Ri(tr) Ra(tt) i@ Ry (tT) f (t24)

Here the vectorax corresponds to the distance of farm, soax = 1=(2dy),
whilst Ri(t;) corresponds to the rate at which beets are hauled from farm
k at time t;j, so as in (13). The default case is where eaét(tj) and
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(5.3.2)

(5.3.3)

f (t;) is constant over timet;. Denote this default schedule a&,. This
will in turn result in a constant RHS vector Fg. Suppose we require some
alternative RHS vector F, given that the vectora is xed, how can we
reschedule so that, for example, there is an increase in beate towards
the end of the day? Suppose that our desired schedule matRx= Ry+ R,
whereR corresponds to the changes made to the default schedule, ethi
gives us our new RHS rate vectdf = Fo+ F. We now have a new system
derived from this,

Ra= F:

This system corresponds to the reshu ing of the schedule, R = 0 and
R = 0 then no rescheduling has taken place. But suppose we haveéesired
new scheduleF; then we need to nd R which gives usF = F  Fq.
Whilst the system is under determined, it will typically hawe in nitely

many solutions. Intuitively, the rate will increase when mee of the trucks
are moving from nearby farms, as the travel time from the farnto the
plant is shorter. Also, there are certain properties abouR which must
hold.

(a) As the number of trucks working at any timet; is constant, all en-
tries of each row ofR must add up to zero. In other words, if an
extra truck is working at one farm, it means one fewer is wonkg
somewhere else.

(b) As the total number of beets needing to be hauled over the wkhe
day is xed, all entries of each column oR must add up to zero.
In other words, if less beet is going to be hauled at one houhdn
more will have to be hauled later on to make up for this.

(c) For every entry of the matrix Q; Rk(tj)) Q;, i.e. no more than
all of the beets of a single farm can be moved in one go.

We shall call every type of matrix that satis es thes properties a "beet
matrix’. Due to the rst and second constraints, anN M beet matrix
has(N 1) (M 1)degrees of freedom. Note thdt is also a beet matrix,
as an increase in rate at one time will mean a correspondingcdease in
rate at another. Note also that a linear combination of beet nteces is
also a beet matrix. De ne a 'simple beet matrix' to be a matrixwith only
four non-zero entries, which lie in a square. For example, rder the
simple beet matrix

am+x;n = 1
Anin+y = 1
(All other entries zero)

8
% amn = 1
Amn+xn+y = 1
Amnxy) = E

Although this has not yet been attempted, it is suspéed that R can
be constructed by taking a linear combination of these. Therpposed
method is as follows
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(a) Sort the vector a from low to high.

(b) Use a multiple of the beet matrixA(1; T 1;N 1;1) to ensure that
the bottom entry of F is met. This is essentially taking the trucks
from the farthest farm and shu ing them to the nearest farm atthe
end of the day to boost the rate at this time.

(c) Moving up one row ofF at a time, use the row above irX to help
correct for the previous step. The second beet matrix addedlibe
A(L;T 2ZN 11).

(d) If the third beet matrix constraint is ever violated, mowe in to
columns modify columns 2 andN 1 instead, moving in additional
columns if necessary.

(e) There will be no remaining row to correct the top row - but his will
not matter. We know that the desired RHSF is also a beet matrix,
so providedF; to Ft are as required thenF; must be as required,
as there are onlyT 1 degrees of freedom in the beet matrik, so
the entry F; must be as required.

Unfortunately there was not enough time to test this method ding the
week, but hopefully this or something similar could be used.

6 Prediction markets for campaign planning

6.1 Description of prediction markets

(6.1.1)

(6.1.2)

We will start with the de nition given by Leigh and Wolfers: predic-
tion markets are markets where participants trade contragtwhose payo
depends on unknown future events. The de ning feature of aediction

market is that the price of these contracts can be directlyterpreted as
a market-generated forecast of some unknown quantitjl0] Their mech-
anism relies on the e cient markets hypothesis:the price of a nancial

security or prediction market contract re ects all availale information.

[10] Therefore prediction markets are an example of e cientrowdsourc-
ing | aggregating dispersed, and often contradictory, knowedge from a
group of people to obtain very precise information about theutcome of
a future event.

Modern approach to prediction markets began in 198&hen three econo-
mists of the lowa University created a market to predict the oicome of
the presidential election (Bush vs Dukakis). It was obserdethat in any
given moment in time such market gave much better forecast &am all
mayjor polls. The experiment has been carried on for many othelections
and the comparison shows that it beats all polls in about 75% the times.
The advantage of markets is even bigger when the time to elewt is long.
[11]
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(6.1.3)

(6.1.4)

After the success of lowa Electronic Markets the intest in prediction
markets grew rapidly. Currently markets are used by many lge corpora-
tions (Google, Microsoft, IBM, Lockheed Martin,etc.) as a tool to assess
the probability that a project will end as planned, that a saés goal will
be achieved or as a tool to estimate the market potential of movative
products. [12] For instance, General Electric has been ruimg markets
for new ideas and products originated by employees. Eli Lyjjla large
pharmaceutical company, ran a prediction market to supporthoice of
new drugs for further development, primary decision factobeing mar-
ket potential. Further, in the BRAIN ! project | an internal research at
Hewlett-Packard, it was shown how to run prediction markets h small
numbers of participants (up to 10 people) and still obtain meningful re-
sults.

Apart from internal corporate applications there ag also many publicly
available commercial markets €.g. Hollywood Stock Exchange, Intrade),
where operators often pro t from fees or selling complex aly@es derived
from the market data. Furthermore, even DARPA and IARPA? have im-
plemented prediction markets [13], mainly to obtain accuta predictions
important for the American military or intelligence communty.

6.2 Reliable information source for campaign planning

(6.2.1)

(6.2.2)

(6.2.3)

Prediction markets are primarily a source of inforition that can be ag-
gregated e ciently from their participants. This property allows to use
them to reduce the uncertainties in the process of campaigtepning. For
instance, the information that could possibly be gatheredntough a pre-
diction market encompass the main time points of the campaig(start,

peaks, end), predictions about the quality of the soil and atut yield in

di erent regions and time periods.

Another very important bene t from the use of predicton markets is the
fact that all parties, including farmers, would be involvedn the campaign
planning process, everyone could feel that his voice is héand that he
can have impact on the entire process. Such a prediction matkcould (or
even should) be incorporated into a larger system for camai planning,
which in part would work as a public consultation platform.

For instance, take one of the biggest uncertaintiess the planning process
| the yield from elds. On one hand it depends on such hard to predict

1Behaviorally Robust Aggregation of Information in Network s

2Defence Advanced Research Projects Agency | an American goernment agency supporting
large scienti ¢ projects that might be useful for military p urposes

3Intelligence Advanced Research Projects Agency | the counterpart of DARPA devoted to
intelligence purposes
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(6.2.4)

(6.2.5)

factors as weather. The knowledge of the team involved in tleampaign
planning will probably rely to a great extent on the data fromweather fore-
casts. However due to experience using market for crowdsdagcfarmers
might give better results. For example the futures market foorange juice
concentrate predicts Florida weather better than the Natioal Weather
Service does. [11] There are also additional factors bestokm to the

people that are in the eld ( guratively and literally). The se include: the
quality of the soil (variable and dependent on recent usageskory), his-

torical yields, information from the current season, suchsathe schedule
of all agricultural tasks that have been done or are to be don@owing,

fertilization, irrigation). All this data is of great signi cance for predicting
the yield throughout the campaign.

All this information can be easily aggregated into gid forecasts by a
properly set prediction market involving farmers. Others articipants are
also welcome, as they increase diversi cation of informain that in turn
can enhance accuracy of a prediction market ([10] and [12])he questions
on the market, that have to be binary, could ask about severd¢vels of
yields for every district or county separately. As an examplee provide a
set of questions for Uttlesford district in Essex county for e given week
would take the form#:

The yield in Uttlesford district from 6 to 12 October to be belw
3000 tons.

The yield in Uttlesford district from 6 to 12 October to be over3000
and below 6000 tons.

The yield in Uttlesford district from 6 to 12 October to be over6000
below 9000 tons.

The yield in Uttlesford district from 6 to 12 October to be over9000
tons.

Similar sets of questions could be posed for every district oounty for
every week (or even every day) of interest.

Such a prediction market could be incorporated int@ larger software
tool that would use di erent algorithms and solutions to hep in the cam-
paign planning process and would allow for fast and e cientriformation
exchange between all parties involved in the campaign.

7 Interaction models

In this section we describe some of the possible mechanisimattwere discussed for
how the di erent participants in the system could usefully nteract with each other,
following the information-gathering that can be e ected bya prediction market.

4“Number of toms and dates are arbitrary.
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Broadly speaking the mechanisms discussed were for how then exchange bids
and o ers.

7.1 Bidding and o ering processes

(7.1.1) We have discussed various potential bidding and aiag processes. Some
are based on the idea of a limit order book. This is used in naml
markets to match bids and o ers in buying stock. In the simplst case,
imagine that people wanting to buy a stock make o ers that thg will buy
certain amounts at certain prices. On the other side, peoplganting to
sell make o ers that they will sell certain amounts at certan prices. Then
the market-maker clears the market by allocating rst the hghest bid to
the lowest o er, then the next highest and so on. If there arei¢s, which is
usually the case because the allowed bids and o ers are detized) then
we will reach a situation where there is more demand for the eapest o er
than the amount available. In this case, there are two ways ofiaking the
allocation.

(a) Proportional: the bidders each receive a particular pportion of
their bid, the proportion being the supply:demand ratio.

(b) First-come- rst-served: the supply is allocated to thebidders in the
time-order their bids came in.

(7.1.2) Ifthis kind of process were applied to the grower-héer allocation process,
then growers would enter bids of what they would pay for trangort of their
beet in a particular time-slot. They could make multiple bid, expressing
(for instance) their preference for day or night,their prefrence between
di erent days. But only one of their bids will be accepted.

(7.1.3) On the other side, hauliers make o ers of what haulagcapacity they can
supply in each time-slot, and at what price. Then the bids and ers are
stacked up and handled in a similar way to the outline abovenlthe beet
context it seems that the second method of dealing with tiesilvt better
with the way the industry operates, since it tends to ensurehat more
growers are collected in consecutive time-slots.

(7.1.4) If such a system is to operate in the beet industry, iteeds to include not
just growers and hauliers but the processing plants too. Téiintroduces
complications but a potential approach was discussed andastlined here.
The information that the growers and hauliers enter will be & mentioned
above. But the processing plants will also need to state whatice they
are prepared to pay for beet delivered in particular time-sts. This may
vary from plant to plant. Also the time-slots may have limitedamounts
of beet that can be booked into them.

(7.1.5) The process of clearing the market then could proakby a grower accept-
ing a price and amount from a processing plant, and then haxgra certain
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time during which he accepts a certain o er, or o ers, of trasport, and
then con rms the whole arrangement when the di erent elemds are in
place.

(7.1.6) Itis important to avoid the situation of booking in to the processing plant
but then not being able to arrange transport.

(7.1.7) In this process, which is e ectively an auction, thearticipants need to
have an incentive to bid their true values. This is done (in nte conven-
tional auctions) by a Vickrey auction, in which the item is sa to the
highest bidder but at the price o ered by the second-highedbidder. A
similar scheme would be needed in the beet market, but may leecom-
plications because of the 3-participant nature.

A Expected cost integrals

We give a more detailed explanation of the method used in Swdwsion 4.7.

A.1 Distribution of path integrals

(A.1.1) Let X(t); o be a continuous-time Markov chain, which takes values in the
setS = f1;2;3;:::g of allowed states and consideA to be a subset ofS
containing all the states except the nal one. We want to evalate the
distribution of path integrals given by:

z

= fx(t)dt
0

wheref is a non-negative real cost function and =infft> 0: X (t) 2 Ag
is the hitting time of the nal state.

(A.1.2) The function f; has the interpretation of cost per unit time of staying
in state i and, therefore, is the total cost over the period spent inA
(with the assumption that A does not contain any absorbing state). The
Laplace transform of the distribution of path integrals dened above is
given by:
vil )= Ei e

with the understanding thaty;( ) =1 for i 2 A.

(A.1.3) The following theorem provides a simple way of calcting this.

Theorem 1. For each > O;y( ) =(vi( );i 2 1) is the maximal solution
to the system of equations:

X
qJ'Zj:fiZi; i2A
j2l

24



Agrifood Campaign Planning ESGI100

withO0 z 1forj 2 A, and g; the elements of the generator matrix
andz =1 forj 2 A in the sense thaty( ) solves this system of equations
and, if z=(z;i 2 1) is any solution, theny;( ) z;8i21.

(A.1.4) The Laplace transform of the distribution is closelyelated to the moment-
generating function (via a minus sign in the exponential), s by formal
di erentiation of the system of equations given in the thecgm we can
obtain all the moments of the distribution. In particular, one formal
di erentiation gives us the expected value of the path integl (conditional
on the chain starting ati 2 A).

(A.1.5) This methodology is very similar to the potential thery for Markov chains
(as presented, for example, by Norris [6]) and indeed givestBame exact
results. In such a context, one in principle could also comlgr discount fac-
tors but we have not included them in our model. See also thestiption
by Pollett et al.[5].

(A.1.6) The basic idea behind this technique is that we can dae a continuous-
time Markov process on a state space with an absorbing stateg process
will, then, spend some time in the bulk of the state space, wieeit incurs
in a certain cost per unit of time spent in it, and then it will eventually hit
the boundary, where it stays forever (in more generality, #re could also
be a cost when hitting the boundary, but this would just be a aostant
added to the overall cost).
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