
ESGI100: Crowd Emotion - Gabor Filter
Selection and Computational Processing for

Emotion Recognition

Erhan Coskun, Torran Elson, Daniel Jabryes, Sean Lim, James
Mathews, Imad Muhi El-Ddin, Nikolai Nowaczyk, Rafa l Prońko,

Patrick Raanes, David Kofoed Wind, Matthew Woolway

ESGI100

April 11, 2014



Problem and Approaches

Image

Gabor Filter

LBP

TOP

Histogram Concatenation

Dimension Reduction

SVM

I Can we infer an optimum
subset of 18 Gabor Filters
for classification?

I Speed up using FFT

I Dimension reduction

I LBP: why 59 features rather
than 256?

I Gridding



Finding the Optimum Subset of Gabor Filters

Figure 1 : 2AFC scores for the 18 different Gabor filters. Left table is
AU1 (eyes) and right table is AU27 (mouth). Left is split by frequencies
and right is split by angles. The columns corresponds to 3 runs (because
of random training/test splits).



Traditional Gabor filter

I g(x , y) = K exp{−π(a2(x − x0)2r ) + b2(y − y0)2r )}
· exp{j(2π(u0x + v0y) + P)}

I Gabor filter implementation on a spatial domain In MATLAB
environment

I filter = gaussian.∗sinuzoid; (no loop needed)

Picture Size (2n) CPU time

n=6 0.0625

n=7 0.9219

n=8 29.0625



Gabor filter using FFT

I Use the rule for the FFT of convolution:
I FFT (image ∗ filter) = FFT (image)× FFT (filter)

Image Filter

Result: FFT(image) x FFT(filter)

Filtered Image: InvFFT(Result)

FFTFFT

InvFFT



Gabor filter with FFT

I Typical results

picture size (2n) cputime

n=6 0.0156

n=7 0.0313

n=8 0.0625

I If the image size is 6= 2n use FFTW



Separable methods (another alternative implementation)

I Gabor filter with orientation parallel to the image axes are
separable mining that

I G (x , y) = f (x)g(y)

I This separation has been extended to work along to
orientations θ = kπ

4 this aproach reduce the computation
considerably.

I Traditional method 1.1 fps, Gabor with FFT 12.8 fps,
Separable method 30 fps. See [Accurace and Efficient
Computation of Gabor Features in Real-Time] for details.



Dimension Reduction
I Downsample by almost 70 % based on histogram below which

shows all features per filter and take values > 0.1
I Reduce given Action Unit results for classifier training to 500

samples in order to balance the distribution of activated and
non-activated results. This is because there were 100 times
more non-activated results

I Classifier accuracy improved to 98% for example on AU1 by
reducing features used to 442, from 50976



Local Binary Pattern (LBP): 59 Vs 256
I For each pixel, we consider it’s 8

neighbours.

I Assign 1’s for values greater than
pixel, else 0’s.

I This gives 256 combinations.



Local Binary Pattern (LBP): 59 Vs 256

I In facial images and texture images, experimental data has
shown that roughly 90% of all LBP patterns come from the
first row.

I Thus we only consider to use the 58 patterns below, with the
59th consisting of all other patterns.

I Does this 59th category tell us anything? (Currently used but
slight speed up possible without it)



Grids

I Currently we take a rectangle of cropped face and compute
binary patterns for every pixel.

I Some parts of this rectangle are clearly not useful for emotion
recognition.

I Instead used ellipse stencil and keeps only 78% of the pixels to
perform LBP on.

I Experimental data makes use of 4×4 grid for images. We can
have different sized regions which would be useful for elliptic
stencil.

I More regions increase accuracy but slows SVM.



Further Work

I Determine an optimal set of filters. For example using a
greedy algorithm to search for optimal parameters.

I Implementing FFT

I Select appropriate filters for each AU using bottom up
approach.

I Determine optimum grid size


