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The problem

If the concentration of the droplets on the fibres becomes too large,
we have saturation and the gas flow may re-entrain the droplets.

We aim to model the processes occuring in the coalescer in order
to understand saturation.
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Our approach

1 Macro-scale model of the coalescer

2 Micro-scale considerations for droplets within the filter

3 Constitutive relations for macro-model determined by
micro-scale considerations

3 / 13



Macro-scale: Canonical one-dimensional problem

The quantities αlg, αlm, αg, ug, ul, p vary with position and time
according to

αlg + αlm + αg = 1, (1)

∂

∂t
(ρgαgφ) +

∂

∂x
(ρgαgugφ) = 0, (2)

∂

∂t
(ρlαlgφ) +

∂

∂x
(ρlαlgφug) = −fd, (3)

∂

∂t
(ρlαlmφ) +

∂

∂x
(ρlαlmφul) = fd, (4)

∂

∂t
[(ρgαlg + ρgαg)φug] = −

∂p

∂x
− µg
kg
φug, (5)

∂

∂t
(ρlαlmφul) = −

∂p

∂x
− Flm. (6)

Here, fd = fd(αlg, αlm, ug) and Flm = Flm(αlm, ug, ul, λlm) are
determined by micro-scale considerations.
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Macro-scale: Simple case in 1D

∂

∂x̃
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)
= Aα̃lg,

∂
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(
α̃4
lm

∂P̃

∂x̃

)
= −Bα̃lg,

∂

∂x̃

(
α̃g
∂P̃

∂x̃

)
= 0,

αlg0α̃lg + αα̃lm + α̃g = 1,
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where
A =

λL2µg

kgφρl(P1 − P0)
, B =

λL2µlmαlg0

k3lmαφρg(P1 − P0)
.

We assumed that α̃g ≈ 1⇒ P is linear.
å Analytical solutions for αlg and αlm.
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Macro-scale: Simple case in 2D
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where

E =
εµlmLρlg

k3lm(P1 − PO)
.
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Micro-scale considerations I

Capture rate of droplets:

fd = αlgρlvg(1− φ)(df + dd) (7)

Penetration length λ = fd/vg ≈ 0.2 mm

Stokes flow along fibres

Assume fibres coated by liquid
Stokes flow of liquid along the fibre
R0 : fibre radius, R1 = R0 + h radius of coated fibre

Flow:

Q =
2π

µ

∂p

∂x

[
(R2

1 −R2
0)(3R

2
1 −R2

0)

16
− R4

1

4
ln

(
R1

R0

)]
(8)

Experimental data → h ≈ 0.1µm.
Coated fibres can sustain large fluid flow.
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Micro-scale considerations II

Droplet displacement
Balance surface tension variation when moving on fibre
against drag force on droplet:

rd =
(Nf − 1)γdf

3ηug
(9)

Droplets with radii below rd do not move.

Continuum equation to implement this:

αlm = nλ

∂αlm

∂t
+
∂ulαlm

∂x
= ugαlg(1− φ) (10)

ul =

{
0, Vdrop < Vdrop minimum

ug +
∂p
∂x

1
3πµrdη

, Vdrop > Vdrop minimum
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Markov approach I

One-dimensional lattice model that includes crossings and
open space

Particles move freely in the open space and as a function of
size on the crossings

Two regimes; r(k) =


ek k is small

Crossover behaviour

k−3 k is large

Saturation transition dependent on parameters such as
crossover and influx of particles

Do we provide a tool to help design a coalescent? Find
optimal operating conditions?

9 / 13



Markov approach II

The mathematics; Markov generator

Lf(η) =
∑

r(ηx)(f(η
′)− f(η)) Paticles on crossings

+
∑

u(f(η′)− f(η)) Term due to particles in open space

+ u(f(η + δ1)− f(η)) Term due to incoming particles

Defining saturation - When a single particle is of N (the total
number of particles)

Controlling the average particle number -
d
dtE(N(t)) = u− E(ηL r(ηL))
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Markov approach: working coalescer
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Markov approach: saturated coalescer
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Results

Multiple macro-scale models to describe the physical
processes going on in the coalescer:

Continuum model
Markov approach

Two possible micro-scale mechanisms for flow of liquid
droplets through the fibre network:

Stick/slip idea
Stick/film-flow idea

Simulations for continuum and Markov models
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