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Executive Summary

A contaminant, which also contains a polymer is in the form of droplets
on a solid surface. It is to be removed by the action of a decontaminant,
which is applied in aqueous solution. The contaminant is only sparingly
soluble in water, so the reaction mechanism is that it slowly dissolves
in the aqueous solution and then is oxidized by the decontaminant.
The polymer is insoluble in water, and so builds up near the interface,
where its presence can impede the transport of contaminant. In these
circumstances, Dstl wish to have mathematical models that give an
understanding of the process, and can be used to choose the parameters
to give adequate removal of the contaminant. Mathematical models
of this have been developed and analysed, and show results in broad
agreement with the effects seen in experiments.
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Decontamination ESGI68

1 Introduction

Dstl is the main research organisation of the Ministry of Defence. The problems
described here are part of the remit of the Hazard Management team. Their brief
is to develop methods to minimize the hazard resulting from the use of chemical,
biological or radiological weapons. The team’s activities support both civil and
military hazard management. For instance, patented decontamination formulations
have been evaluated for uses such as cleaning railway rolling stock, removal of traffic
film from road vehicles, and graffiti removal.

1.1 Problem description

(1.1.1) Consider a polymer solution for which the solvent is a pollutant, which
we call A throughout (the Agent of contamination). A drop on a hori-
zontal surface will adopt an equilibrium shape determined by its size and
surface tension and gravity, in a time determined by its viscosity. If a
layer of decontaminant, a solution of B in water, is applied above, then A
will diffuse into the aqueous layer and undergo a chemical reaction with
B which renders it harmless. The polymer P does not diffuse into the
aqueous layer. This situation is illustrated in Figure 1.

• A: contaminant

• B: decontaminant (2% mass fraction)

• P: polymer (5% mass fraction)

Figure 1: Schematic diagram

(1.1.2) In some cases, the aqueous layer may contain a microemulsion of toluene
and butanol. This has three effects. First, it increases the solubility of
A in the aqueous layer, which makes it easier for the required reaction to
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occur. Second, it decreases the effective concentration of B in the aqueous
layer, which reduces the reaction rate (or increases the amount of B that
is required). And third, the organic component can enter the A region,
where it can cause the polymer to swell.

(1.1.3) The diffusion coefficients in the polymer solution depend on the polymer
concentration, and so do the surface tension and viscosity.

(1.1.4) In some cases there may be some absorption of A into the solid surface,
for instance if it is porous like concrete.

(1.1.5) The challenge is to determine the residual pollution level left on the surface
as a function of time, and of all the physical parameters such as drop size,
initial concentrations, reaction constants etc.

(1.1.6) A second problem is to consider the same droplet but deposited on a verti-
cal surface. In this case the decontaminant is delivered as a spray. There is
gravity-driven flow of the decontaminant solution down the surface, which
brings fresh decontaminant solution into contact with each drop, but also
limits the contact time. Again, the question is how to determine the total
required volume, and the time to deliver that volume, given the relevant
physical and chemical properties.

2 Mathematical models

We describe the models and their relationships here.

2.1 Common features of all models

(2.1.1) All of our models will assume

(a) linear diffusion of A and B in the reaction layer, each with constant
diffusivity;

(b) simple law-of-mass-action kinetics with a 1:1 mole ratio between A
and B;

(c) no transport of A into the solid substrate;

(d) no transport of A or B or water from the top of the applied layer (in
particular, no evaporation);

(e) no diffusion of B into the contamination drop;

(f) no diffusion of P into the reaction layer;

(g) except in Section 2.7 we assume there are no advective velocities in
the fluids, so all mass transport is by diffusion;

(h) no volume changes on mixing, so since we assume all densities are
effectively 1, we have conservation of volume.
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(2.1.2) None of the models consider in detail the case of the microemulsion that
was mentioned in paragraph (1.1.2).

2.2 Basic one-dimensional model

(2.2.1) Dstl’s simplest model for the droplet shape is a spherical cap with angle
of contact α of 20–25◦. This has an aspect ratio (radius:thickness) of
about 5. (h/r = tan(α/2) is 0.2 for α ≈ 22.6◦.) In view of this, it was
decided to consider a 1-dimensional problem first, which we could think
of as modelling the diffusion and reaction in the vertical direction above
the centre of the drop.

(2.2.2) We consider a lower contaminant layer, initially consisting of A mixed
uniformly with polymer P, and initially of thickness h0. We consider an
applied upper layer of thickness H − h0 that is a uniform solution of the
decontaminant B. The situation is shown for the case of no polymer in
Figure 2, and for the case with polymer present in Figure 3.

∂A
∂t

= ∂2A
∂z2 − k∗

1
AB

∂B
∂t

= D∗ ∂2B
∂z2 − k∗

1
µχ∗AB

A = 1 D∗Bz = −Bht ht = µ
1−µ

Az

Az = Bz = 0

Figure 2: Configuration of one-dimensional model with no polymer.
The equations are given in scaled variables as defined in Section 2.4.

The process to be modelled then consists of A diffusing from the lower
layer into the upper and reacting with B, with the result that each layer
becomes non-uniform.
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∂A
∂t

= ∂2A
∂z2 − k∗

1
AB

∂B
∂t

= D∗ ∂2B
∂z2 − k∗

1
µχ∗AB

D∗Bz = −Bht ht = µ
1−µ

Az

Az = Bz = 0

Pt = (DP (P )Pz)z A + P = 1

−DP Pz = Pht

Pz = 0

Figure 3: Configuration of one-dimensional model with polymer.
The equations are given in scaled variables as defined in Section 2.4.

(2.2.3) We take layer 1 to occupy 0 < z < h(t), and to have concentration P (z, t)
of polymer and A(z, t) of contaminant, and we treat these as being mass
fractions so that A + P = 1. We think first of the polymer as being dilute
enough that it can be modelled by a diffusion process

∂P

∂t
=

∂

∂z

(

Dp
∂P

∂z

)

, (1)

with diffusivity Dp that may depend on P . The boundary conditions
representing the facts that P cannot penetrate the lower boundary or the
upper are

∂P

∂z
= 0 at z = 0; −DP

∂P

∂z
= Pḣ at z = h. (2)

This, combined with A + P = 1 means that we also have a diffusive flux
of A in layer 1, also with diffusivity DP . We shall use DA1 to denote this
effective diffusivity of A in the lower layer.

(2.2.4) We take layer 2 to occupy h(t) < z < H, and to have concentrations
A(z, t) of contaminant and B(z, t) of reagent, which are both dilute. We
take A and B both to be mass fractions also, and we are regarding the
densities of the two layers as being equal. The reaction we take in the
form
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A+B → E (reaction products),

so we assume its rate is k1AB. Since A and B are in dilute aqueous
solution we model their diffusion by constant diffusion coefficients DA and
DB, so we have

∂A

∂t
= DA

∂2A

∂z2
− k1AB,

∂B

∂t
= DB

∂2B

∂z2
− k1AB. (3)

(2.2.5) At the interface z = h(t) between layers 1 and 2, we assume that thermo-
dynamic equilibrium of A is reached instantaneously, and so the condition
determining the interface velocity ḣ is the mass transport of A across the
interface. The equations representing these conditions are

A(h+) = µA(h−), (4)

−DA
∂A

∂z

∣

∣

∣

∣

h+

− A(h+)ḣ = −DA1

∂A

∂z

∣

∣

∣

∣

h−

− A(h−)ḣ. (5)

In the units we are using, the partition coefficient µ is the solubility of
A in the upper layer expressed as a mass fraction, since when the upper
layer is in equilibrium with pure A in the lower layer, A(h−) = 1 and
A(h+) = µ. There is no transport of B across the interface, so

− DB
∂B

∂z
− Bḣ = 0 at z = h. (6)

(2.2.6) Finally, there is no mass transport of A or B across the upper interface,
so

∂A

∂z
= 0,

∂B

∂z
= 0 at z = H. (7)

(2.2.7) The initial concentrations we take to be P = P0 and A = A0 = 1 − P0 in
the lower layer, and B = B0 and A = 0 in the upper layer.

(2.2.8) When A diffuses out of the lower layer in this model, the concentration of
P will rise near the interface, and it is questionable whether the diffusion
model in equation (1) will be appropriate. Ideally we would like a model
for the diffusion in this layer that is valid over the whole range of propor-
tions of A to P. In the next two paragraphs, we describe two alternative
possible approaches to obtaining such a model.

(2.2.9) There are models for the diffusion of a molecule, A in our case, through a
polymer solution at low concentrations of A. The paper [1] reviews these
models. One due to Phillies takes the diffusivity in the form

D = D0 exp(−αcν), (8)

where D0 is the low-concentration limit, c is the concentration of polymer,
α depends on the molecular weight MA of A and is estimated as propor-
tional to Mβ

A with 0.8 < β < 1 for a polymer, or Rδ
h with 0 < δ < 0.2 for
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smaller molecules, where Rh is the hydraulic radius of the molecule. The
exponent ν is expected to vary from 0.5 for a polymer to 1 for smaller
molecules.

(2.2.10) A different approach is to use a full two-phase flow model for P and A,
with mass conservation, force balance (for the quasistatic situation of slow
flow), and with a suitable model for interaction force between A and P.
Such models have been developed in various contexts, including the math-
ematical modelling of ice cream, as reported in [2].

2.3 Numerical results from one-dimensional model

(2.3.1) The model above can be solved numerically. In each layer, a scaling de-
pending on h(t) is used to replace the layer by a fixed interval (0, 1). This
results in an advection-reaction-diffusion system, which can be solved by
an up-winding method.

(2.3.2) Some results from this are shown in Figures 4-6. First, results with no
polymer present are in Figure 4.

(2.3.3) Corresponding results with polymer present in layer 1 are shown in Fig-
ure 5. Here the polymer has a diffusivity such that it does build up
near the interface, but the concentration does not rise to more than 15%.
However, in Figure 6 the diffusivity of the polymer is set lower (and more
realistic), and here the concentration does built up to nearly 100% near
the interface, which slows down the diffusion of A into the reacting layer,
and so slows the reaction rate very much.

(2.3.4) The way that the polymer is swept up by the interface moving downwards
was also studied. The length scale of the sweep-up is DP /|ḣ|. If DP

is constant, the solution can be studied analytically by converting the
equation into a Volterra integral equation for the value of P at z = h(t).
However, to calculate P this way for general motion of h(t) would still
require numerical solution, and this approach has not been pursued.

2.4 Analysis of the one-dimensional model with no polymer

(2.4.1) When there is no polymer, the concentration of A in the lower layer is
constantly equal to its initial value A0 = 1. So the concentration of A
at the interface is constantly equal to the solubility µ, until the layer
thickness h reduces to 0. So the motion of the interface ḣ is coupled to
the boundary conditions on A and B by

− DBBz/B = ḣ = DAAz/(1 − µ) at z = h. (9)

(2.4.2) If we rescale these equations by scaling z and h with H, B with B0 (the
initial concentration), t with H2/DA, and A with µ, then we obtain the
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0
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−4

t (s)
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Figure 4: Using µ = 0.02, DA = DB = 10−9 m2 s−1, H = 1 mm,
h = 0.1 mm, B0 = 5%, k1B0 = 0.01 (so D∗ = 1, χ∗ = 20, k∗

1 = 10).
Polymer not included. Profiles are shown at intervals of 3 minutes.
Time profiles show total volume of A in decontaminant layer (solid
red), A in polymer layer (dashed red), B (blue), E (green), P (dashed
black). Reactions are largely exhausted due to B reducing to 0.

system
At = Azz − k∗

1AB, Bt = D∗Bzz − k∗

1µχ∗AB, (10)

with

k∗

1 = k1B0H
2/DA =

diffusion time scale

reaction time scale
, (11)

and D∗ = DB/DA, the diffusivity ratio, which is of order 1. The boundary
conditions in these variables are

A = 1, ḣ =
µ

1 − µ
Az = −D∗Bz/B at z = h, (12)

where
χ∗ = A0/B0. (13)

(2.4.3) These equations can be analysed for small µ and times of order 1/µ if k∗

1χ
∗
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Figure 5: As in Figure 4, but including an initial 5% polymer in
the contaminant layer which diffuses with diffusion coefficient DP =
10−12 m2 s−1.

is of order 1. We rescale time to τ = tµ, then the B equation becomes

∂B

∂τ
=

D∗

µ

∂2B

∂z2
− k∗

1χ
∗AB, (14)

so for small µ we have Bzz = 0 to leading order. However, Bz = 0 at z = 1
and Bz = −µ(dh/dτ)B/D∗ is also 0 to leading order, so B is a function of
τ only, B = B(τ). Integrating the B equation through the layer h < z < 1
and using the upper and lower boundary conditions then gives

(1 − h)Bτ = Bhτ − k∗

1χ
∗B

∫

1

h

Adz. (15)

The A equation then is Azz = k∗

1BA to leading order, so with the boundary
conditions of Az = 0 at z = 1 and A = 1 at z = h we have

A =
cosh

(

(k∗

1B)1/2(1 − z)
)

cosh
(

(k∗

1B)1/2(1 − h)
) . (16)

This then gives the velocity of the interface to leading order as

hτ = −(k∗

1B)1/2 tanh
(

(k∗

1B)1/2(1 − h)
)

. (17)
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Figure 6: As above, but including an initial 5% polymer in the poly-
mer layer which diffuses with diffusion coefficient DP = 10−15 m2 s−1.
Note that the plotted profiles in A are decreasing over time since, af-
ter a quick initial phase in which A diffuses out into the upper layer,
the saturated value of A = µA1 decreases, as the build up of polymer
reduces the value of A1 at the interface.

We can now substitute this into equation (15) and we obtain

(1−h)Bτ = Bhτ−χ∗(k∗

1B)1/2 tanh
(

(k∗

1B)1/2(1 − h)
)

= Bhτ +χ∗hτ . (18)

Integrating this over τ , we have

(1 − h)B − χ∗h = IH(a constant) = 1 − h0 − χ∗h0, (19)

since the initial value of B in this scaling is 1.

(2.4.4) It is useful to take this a little further in the case where k∗

1B is small. The
differential equation (17) for h as a function of τ then is approximately

hτ = −k∗

1B(1 − h) = −k∗

1(1 − h0 − χ∗h0 + χ∗h). (20)

Since h = 0 initially we have

h = h0 −
(1 − h0)

χ∗

(

1 − exp(−k∗

1χ
∗τ)

)

. (21)
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This illustrates two things. First, when τ → ∞, h → h0 − (1 − h0)/χ
∗,

and so for complete removal of the contaminant we need

moles of A

moles of B
=

χ∗h0

1 − h0

< 1, (22)

which is of course, no surprise. Second, if that inequality is satisfied,
then this condition shows how the time to reach h = 0 (i.e. to remove the
contaminant completely) depends on the constants involved. In particular
we obtain more rapid removal by increasing k∗

1 or χ∗, i.e. by increasing
the reaction rate or the applied concentration. In fact, the time to reach
complete removal in this scaling is

τremove = −
1

k∗

1χ
∗

loge

(

1 −
χ∗h0

1 − h0

)

, (23)

where the second term inside the logarithm is precisely the mole ratio of
A:B that we saw above in equation (22).

(2.4.5) The removal time can also be studied numerically by the numerical simu-
lations described earlier. The graphs in Figure 7 show the time at which
most of B is used up, as functions of the solubility µ and the reaction rate
constant.

2.5 Spherically symmetric model

(2.5.1) If the droplet is taken as initially a hemisphere, and the decontaminant
solution is a concentric hemisphere, and the effects of the solid surface
are neglected, then the concentrations will remain spherically symmetric.
The situation is illustrated in Figure 8. So they will be functions of r
and t only, and the only difference from the previous model is to replace z
by r, and, for instance, ∂2A/∂z2 by ∂2A/∂r2 +(2/r)∂A/∂r (the Laplacian
operator for a spherically symmetric function).

(2.5.2) Surface tension is also neglected in this model, and the contact angle is
assumed to remain constant and equal to a right angle. There is assumed
to be no pinning of the contact line.

(2.5.3) One effect that may occur in reality but is not taken into account in this
model is any attachment of the polymer to the surface. The mathematical
model keeps all the polymer still dissolved in A.

(2.5.4) Some numerical results from this model are shown in Figure 9. There
is a qualitative similarity between these results and those of Figure 4,
however the depletion of decontaminant happens on a shorter timescale.
Large values of k∗

1 mean that the rate depletion is limited by the speed
of diffusion of contaminant. Diffusion will occur quicker in the spherical

10
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Figure 7: Values of time at which amount of B reaches 10−4 of its
initial value for various values of reaction rate k1B0 (B0 is initial con-
centration of B) and solubility ratio µ. These come from numerical
solution of reaction diffusion equations for A and B in decontaminant
layer, with moving boundary as pollutant is taken up by the decontam-
inant. The polymer is ignored. B0 = 5%, DA = DB = 10−9 m2 s−1,
h = 0.1 mm, H = 1 mm (D∗ = 1, χ∗ = 20). In the first case
k1B0 = 0.005 and µ is varied, in the second µ = 0.005 and k1B0 is
varied, and the third plot shows a two dimensional plot of parameter
space.

geometry owing to the larger area for a given volume. This implies that
the rate of depletion should be larger for a spherical drop than for a thin
layer.

(2.5.5) It would be possible to include polymer in the numerical model in this
case but this has not been done here.

11



Decontamination ESGI68

∂A
∂t

= ∂2A
∂r2 + 2

r
∂A
∂r

− k∗

1
AB

∂B
∂t

= D∗

(

∂2B
∂r2 + 2

r
∂B
∂r

)

− k∗

1
µχ∗AB

A = 1

D∗Br = −Bht

ht = µ
1−µ

Ar

Ar = Br = 0

Figure 8: Configuration of the hemispherical model with no polymer.
The equations are given in scaled variables.
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Figure 9: As in Figure 4, but using a spherical geometry. For ease
of comparision with the one-dimensional model, the total volume of
the layer has again been set to 10 times the initial volume of the drop
of contaminant.

2.6 Two-dimensional model

(2.6.1) We now write down the analogous 2-dimensional model, using the same
notation as above. We shall consider the situation in Figure 10, so the
droplet initially occupies 0 < z < h0(x) for −L < x < L, and the applied
solution occupies the rest of −R < x < R, 0 < z < H. If the initial shape
of the droplet is symmetric about the z-axis, it will remain symmetric at
later times, and we shall assume this so we only refer to the region x > 0.

(2.6.2) At time t the droplet will occupy 0 < z < h(x, t). The unit normal to the
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z

xL

h(x,t)

1

10

∂A
∂t

= ∂2A
∂x2 + 1

ǫ2
∂2A
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1
AB
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∂t

= D∗

(
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)

− k∗

1
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A = 1

D∗Br = −Bht

ht = µ
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Az = Bz = 0

Ax = 0
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Figure 10: Configuration of the 2-dimensional model, without poly-
mer. The equations are given in scaled variables.

droplet surface is

n =
(−hx, 1)
√

1 + h2
x

, (24)

where we are using hx and ht to denote ∂h/∂x and ∂h/∂t, and we shall
use the subscript notation for partial derivatives generally here.

(2.6.3) The diffusion equations for A and B in layer 2 are as before,

A2t = DA2(A2xx + A2zz) − k1AB, (25)

Bt = DB(Bxx + Bzz) − k1AB. (26)

The boundary conditions on the upper and lower surfaces are

A2z = 0, Bz = 0 on z = H; (27)

A1z = 0 on z = 0, 0 < x < L; (28)

A2z = 0 on z = 0, L < x < R. (29)

(2.6.4) On the layer interface, we have no transport of B, so the normal derivative
∂B/∂n = 0. The mass transport condition for A analogous to what we
had before is

− DA1

∂A1

∂n
+ DA2

∂A2

∂n
=

ht
√

1 + h2
x

(A1 − A2), (30)

and we also have A2 = µA1 at the interface as before.

(2.6.5) We take as before initial conditions that the upper layer has A = 0,
B = B0, and we shall treat the case of no polymer for the moment so
A = A0 = 1 in the lower layer. (We therefore drop the suffix 2 from A in
the upper layer now.)
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(2.6.6) We rescale A with µ, B with B0, and z and h with H as before. We scale
x with R, and we work on the radial diffusion timescale so we rescale t
with R2/DA.

(2.6.7) The diffusion equations then become

At = Axx +
1

ǫ2
Azz − k∗

2AB, (31)

Bt = D∗

(

Bxx +
1

ǫ2
Bzz

)

− k∗

2µχ∗AB, (32)

where ǫ = H/R is the aspect ratio, and k∗

2 = k1B0R
2/DA, which is k∗

2 =
k∗

1/ǫ
2 in terms of the k∗

1 we had in section (2.4). We still have D∗ = DB/DA

and χ∗ = A0/B0 = 1/B0 as before.

(2.6.8) The boundary conditions in the scaled variables are Az = Bz = 0 at z = 1,
and on the interface (z = h) we have A = µ and

Az − ǫ2hxAx = ǫ2((1 − µ)/µ)ht (33)

Bz − ǫ2hxBx = 0. (34)

(2.6.9) We now assume k∗

2 is of order 1, and ǫ is small. At leading order in ǫ,
A = 1 above the droplet (i.e. in 0 < x < L), and A = A(x, t) elsewhere,
and B = B(x, t) throughout. This is natural since on this timescale the
diffusion through the thickness H is fast, and so we are effectively seeing
a one-dimensional problem where the activity is in the x-direction and
is uniform through the layer thickness. The difference is that the layer
thickness varies with x.

(2.6.10) It therefore forms a similar model to that studied in section (2.4). As there,
we can obtain the differential equation for B by integrating the leading
order term in the B diffusion equation through the layer, and using the
upper and lower boundary conditions. In this way we obtain the system

Bt =
D∗((1 − h)Bx)x

1 − h
− k∗

2µχ∗AB, (35)

At = Axx − k∗

2AB (x > L) (36)

A = 1 (x < L). (37)

Then if we let IH = µk∗

2/(1 − µ), the droplet thickness h varies according
to

ht = −IHB(1 − h), (38)

and so

h = 1 − (1 − h0) exp

(

IH

∫ t

0

B dt

)

, (39)

until h reaches 0 (at any x < L) at which point it stops. When h reaches 0
we no longer have the condition A = 1 on the lower interface. The droplet

14



Decontamination ESGI68

will of course reach h = 0 at different times for different x, so although
we have assumed the contact line is pinned, the apparent diameter of the
droplet will reduce.

(2.6.11) This model has also been solved numerically for small χ∗. Some results
are shown in Figures 11–12. Note that the numerical calculation assumes
that a thin film is left behind on the substrate as the contact line retreats,
and so mass transfer of A occurs for x < L at all times.
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Figure 11: Numerical results for the two-dimensional model using
µ = 0.02, D∗ = 1, χ∗ = 5, k∗

2 = 10. The initial drop profile is
parabolic with aspect ratio 4, and with radius L = 0.1. As the drop
size decreases, a thin film of fluid is assumed to be left on the sub-
strate, which acts as a constant source of contaminant. The long time
behaviour is therefore depletion of decontaminant via diffusion from
a constant source at x < L.
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Figure 12: As in Figure 11, but with χ∗ = 20. The decontaminant
in this case is depleted before the drop is exhausted. Although the
behaviour is qualitatively similar to that shown in Figure 11, the
timescale is shorter owing to the enhanced diffusion of B within the
thinner layer above the drop.

2.7 Models with flow

(2.7.1) In cases where the droplet is on a vertical surface, the model has to have
fluid flow with velocity u. So we shall have advection-reaction-diffusion
equations of the form

∂A

∂t
+ u.∇A = DA∇

2A − k1AB, (40)

∂B

∂t
+ u.∇B = DB∇

2B − k1AB. (41)

The flow inside the droplet will also need to be modelled, and the surface
tension will come in, and there will need to be models for the contact line
motion.
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(2.7.2) To write this down in more detail we take a two-dimensional model with
a slope of angle α (90◦ for a vertical surface) and axes as in Figure 13
with x downslope and z perpendicular. So we write the fluid velocity as
u = (u,w). We shall write u = u1 in layer 1, and u = u2 in layer 2. Each
flow is incompressible so ∂u/∂x + ∂w/∂z = 0.

H(x,t)

h(x,t)

g

u

x

z

Az = 0

Bz = 0

w = Ht + uHx

u = 0

Az = Bz = 0

Bz = 0

Pe (ht + uhx − w) = µ
1−µ

Az

[ui]
2

1
= [ηiui,z]

2

1
= 0

Pe

„

∂A

∂t
+ (u2 · ∇) A

«

=
∂2A

∂z2
− k

∗

1AB Pe

„

∂B

∂t
+ (u2 · ∇) B

«

= D
∗
∂2B

∂z2
− k

∗

1µχ
∗

AB

∂p1

∂x
= η

∗
∂2u1

∂z2
+ 1

∂p2

∂x
=

∂2u2

∂z2
+ 1

∂p1

∂z
= 0

∂p2

∂z
= 0

Figure 13: Configuration for the sloping model with flow.

(2.7.3) Then the scaled slow flow equations in layer 1 are

0 = −
p1x

ǫ2
+

(

u1xx +
u1zz

ǫ2

)

+
St

ǫ2
sin α, (42)

0 = −
p1z

ǫ3
+ ǫ

(

w1xx +
w1zz

ǫ2

)

−
St

ǫ2
cos α. (43)

Here the Stokes number is St = ρgH2/(µU) where U is the velocity scale,
µ the viscosity, ρ the density, and ǫ is the aspect ratio of the droplet
(height:radius), which is assumed small.

(2.7.4) The boundary conditions on z = 0 are u1 = 0 where the droplet sits.
On the interface, u1 = u2, and the mass balance equation written before
needs to be modified to include the advective fluxes. The pressures in the
layers will be related by p2 − p1 = γhxx where γ is the interfacial surface
tension.

(2.7.5) In layer 2 we have the same equations for u2 and w2 as we wrote for u1

and w1. Where layer 2 reaches the substrate we have u2 = 0. At the
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upper surface, z = H(x, t), we have ∂u2/∂z = 0, w2 = Ht + u2Hx, and
p2 = −γ2Hxx where γ2 is the surface tension of layer 2 in air.

(2.7.6) Although we have not made any progress with solving these equations,
they will allow the study of how the timescale of diffusive transport of
B through the layer compares with its advection past the droplet. The B
remaining in layer 2 will then be mixed in the flow downstream of that
droplet and so will be available to react with a droplet lower down the
slope, but at a reduced concentration.

(2.7.7) In fact, taking U to be the velocity scale for steady flow down the slope,
the Peclet number Pe = UH/DA is estimated as 6000, indicating that
the flow down the slope is too fast for diffusion into the droplet to have
significant effect. This very much agrees with observations by Dstl that if
a fine mist is sprayed onto the surface then much less fluid is needed than
if it is sprayed on in such a way that it runs down.

3 Conclusions

(a) Certainly it is essential to ensure that there is enough mass of decontaminant
to react with all the contaminant.

(b) It is also essential to ensure that the decontaminant has enough time in con-
tact.

(c) Mathematical models of the decontamination process have been written for
various cases.

(d) These models can, depending on parameter values, show the observed effect
of the formation of a polymer “skin” that can prevent the complete removal
of A.

(e) The calculations for flow down a slope indicate that the flow is too fast for the
necessary diffusive transport of B to the interface. This is in accordance with
Dstl’s observation that a fine mist, providing a thin layer that does not flow
down the surface, is able to decontaminate using less fluid than when there is
flow.

We should also point out various areas that we have not investigated in this study:

(a) We have only included the simple one-step reaction between A and B, whereas
it is thought that in reality the oxidation of A is more complex.

(b) We have not included any realistic model for the rheology of the polymer P,
or the flow of A through it when P begins to concentrate near the interface.

(c) We have not considered the effects of the interaction of the decontaminating
solution with multiple droplets.
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(d) We have not considered the case where B is dissolved in a microemulsion, in
which case there is dissolution of the organic components into the contami-
nant, with consequent swelling of the polymer.

4 Representative data values

Dstl have carried out experiments of various kinds which we report briefly here,
along with the other data values that have been used in the numerical simulations.

4.1 Reaction rate experiment

(4.1.1) The reaction rate constant has been estimated by a reaction in which B
is present at a concentration that does not reduce much during the time
that [A] is halved, and the time for that halving is measured.

(4.1.2) The decontamination reagent that we have called B is an oxidising agent.
In its raw form it is sodium dichloroisocyanurate dihydrate, sold commer-
cially as fichlor.1 This dissolves in water to produce hypochlorite ions
ClO−. In fact each mole of fichlor produces 2 moles of ions. The molecu-
lar weight of fichlor is 255.98. (But note that some of Dstl’s calculations
appear to have used the anhydrous molecular weight of 219.95.) We shall
regard the hypochlorite ions as the reagent B, so the ionic weight is 51.4.

(4.1.3) In the reaction rate experiment, 4.6 g fichlor were dissolved in 100 ml of
water. This gives a concentration of B of 0.03594 moles/100 ml (based on
the molecular weight of the hydrated form). The typical concentration of
B in solution is that resulting from this concentration of 4.6 g of fichlor to
100 ml of water, which is a little less than 2% by weight of hypochlorite
ions (our reagent B).

(4.1.4) In the reaction rate experiment, the contaminating agent A had molecu-
lar weight 159.1, density 1.274 gm/cc, viscosity 3.95 cP, solubility in water
0.06 g/100 ml, and surface tension 42.5 dyne/cm. It was dissolved with
200µl in 25 ml of solution. This gives a concentration of 0.6406 moles/100 ml.

(4.1.5) When a microemulsion is used, the solubility of A can rise to 0.25 or even
0.95 (i.e. 95 g of A in 100 g of water).

(4.1.6) The polymer used in this experiment had average molecular weight 2×106,
being composed of on average 2× 104 monomers each of molecular weight
100.

1 The formula, structure and details are available from
http://www.chemblink.com/products/51580-86-0.htm.
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(4.1.7) The observed time for the concentration of A to halve was Th = 6 sec.
In terms of a pseudo-first-order reaction rate constant Kobs such that
dA/dt = −KobsA, this means that Kobs = loge 2/Th. In terms of the
constant in a reaction rate equation of the form dA/dt = −KAB, this
means that KB = Kobs where B is the concentration of B during the
experiment (treated as constant).

4.2 Droplet decontamination experiments

(4.2.1) In other experiments, contaminant droplets of measured weight were placed
on a metal plate, the reagent washed off, and the residual amount of con-
taminant estimated by extracting it to a solvent. (The droplets were much
larger than those that would be produced by an aerosol.) This was then
repeated with droplets of similar size but leaving the reaction to proceed
for 30 or 60 or 120 minutes.

(4.2.2) The initial drop radius on the plate was estimated. Part of this table of
data is shown.

Drop No. of Wgt Decon. % reco- mass r
radius drops tHD time -very (mg) (mm)
(mm) (mg) mins

4.5 1 46.1510 15 77.09 33.0755 3.946
1 47.6995 30 68.92 30.5595 3.850

etc. . . . . . . . . . . . . . . . . . .
1 52.0790 Control 107.57 52.7090 4.539

In this, the Wgt column is the mass of A+P in mg, and P was present
at 5% by weight, and this was placed in a Petri dish, and decontaminant
added. Then at a time of say 15 minutes, the plate was removed, The
% recovery column is the proportion of the mass of A that remained after
the stated time, compared to the initial mass of A. In the final column
labelled r, this has been converted to an “equivalent” drop radius using
a fit (derived from other experimental data on droplets of this kind) in
which volume is proportional to the 3.2 power of radius. The “Control”
line is for a droplet that was deposited and then no reaction was carried
out, but the content was estimated in the same way as was done in the
other cases. These often give overestimates (as above) of the amount of
A present.

(4.2.3) It may be possible to correct for this but it has not been done systemati-
cally in the table. In fact for the 1 drop case the first value of the control
recovery has been used to rescale each of the other cases, and 100% has
been used for the cases of 2, 4, 8 drops.

(4.2.4) Some of the estimated values of A after 120 minutes may be incorrect,
because the polymer is observed to form a seal over whatever is left, and
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it may be that in some cases this has prevented all of the A from being
extracted by the solvent.

(4.2.5) The depth of reagent that was added in these experiments is not known ex-
actly, but was such that the reagent just covered the drops. The Petri dish
diameter is 11.5 cm (radius 5.75 cm) the metal plate is 8 mm×5 mm×0.2 mm,
and it is believed that 20 or 25 ml of reagent were added. These would
give depths of about 0.7 mm or 1.2 mm above the top of the plate.

4.3 Delivery rate experiments

(4.3.1) In these experiments, contaminant droplets were put on metal plates,
which were mounted vertically, sprayed for say 10 seconds, left for 15
minutes, and the residual A estimated. It was found that the jet velocity
was important rather than the coverage in volume delivered. This was
in a context where the reagent was delivered in a microemulsion. Dstl’s
suggestion for how the velocity of delivery might affect the process was
that the jet may partly flatten the droplets, and so thin the layer that
needs to be removed.

4.4 Diffusivities

(4.4.1) We assume that the diffusivities of the species in aqueous solution are
inversely proportional to M3/4 where M is molecular weight, and we take
the diffusivity of oxygen to be 10−9 m2/s, so we take

DA = 10−9

(

159.1

32

)

−3/4

, DB = 10−9

(

51.4

32

)

−3/4

, (44)

both in m2/s.
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