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Executive Summary

The scheduling of future timetables is an important driver for aircraft
sales and design considerations in future aircraft. Airline companies seek
to maximise their profits through capturing passenger demand through
the quality of service they offer, within which timetabling plays an im-
portant role.

In this study a hub and spoke system for medium haul travel is analysed,
with particular reference to the time at which departing waves are set
from the hub airport. Initially, an optimal wave time based only on the
geography of the hub is considered. Subsequently, a model is developed
which includes the constraints of market share and limited fleet size,
and an example timetable produced. A final note is made about game
theoretical aspects that might be considered in moving the work forward.
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1 Introduction

1.1 Background and scope

(1.1.1) Airbus provides consulting services to airlines seeking to grow and/or re-
new their profitability and therefore their need to purchase aircraft. Hence,
the ability to provide airlines with analysis of optimum aircraft scheduling
will increase the potential of Airbus to generate profit.

(1.1.2) In the long term, Airbus is working on future aircraft designs to help
mitigate the growing constraints to achieve sustainable development of
the aviation industry. Understanding future aircraft schedule frameworks
will enable Airbus to better understand the likely requirements of new
aircraft.

(1.1.3) The general problem can be stated as ‘compute a future network timetable
and associated fleet plan that maximizes the airline’s profit under external
constraints’. The problem contains a large number of parameters and
hence some simplifications are proposed to make the problem manageable
for the study group.

(1.1.4) Initially the hub and spoke system will be considered for medium haul air-
craft. The hub and spoke system regards a single airport as the hub for an
airline’s operations with point-to-point (P2P) flights from the hub to lo-
cal airports. In the hub and spoke system aircraft arrivals and departures
occur in waves. A typical example is shown in Figure 1. In this system
an aircraft will depart from the hub airport on one wave (or ‘bank’), and
return 2,3,... waves later to the same airport. The time in between depar-
ture and arrival (labeled total turnaround time, TOD) is required for flying
to the destination, turnaround time at the destination (≈ 30mins), flight
back to the hub and finally reconfiguring the aircraft such that it is ready
for departure from the hub again (≈ 45mins). Ideally, one should consider
both long haul and medium haul flights in a hub configuration. How-
ever, because there are relatively few long haul flights and carriers have a
greater flexibility over the take-off/landing times of the long haul flights
the two problems can be partitioned in the following way. The carrier
can define the medium haul time table, and the long haul flights simply
dovetail into this pattern by shifting their take-off times appropriately.

(1.1.5) A number of industry parameters are used to evaluate the performance of
an airline based on empirical analysis of past data. The market share M
(proportion of passengers on a route that the airline will attract) is given
by

M =
Q0

Q0 +
∑N

i=1Qi

, (1)

where Q0 is the Quality of Service Index (QSI) for the airline and Qi
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Figure 1: Arrivals and departures in a typical hub and spoke system.

(i = 1, ..., N) is the sum of the competitors’ QSI (airlines offering the
same route). The QSI reflects a passenger preference for aircraft type,
number of stops, flight frequency, travel elapsed time, fare, time of day
and day of week. The details of the coefficients to calculate QSI can be
found in Appendix A.1. Interestingly, fare price is not included in the QSI
model due to the lack of reliable data, however the price will clearly have
an effect on whether a passenger will use a competitor’s service or not.

(1.1.6) The overall objective of any schedule is to maximise profit

s =
∑
OD

(POD × fOD − Ctot
OD), (2)

where s is the profit, POD is the number of passengers on a particular route
(origin to destination), fOD is the average fare for the corresponding route,
Ctot

OD is the total cost associated with that route. The true situation is often
more complicated since national carriers can have political constraints
requiring them to serve non-profitable routes but these are ignored for the
purposes of this analysis.

(1.1.7) The relationship between passenger number and overall demand for a route
is given by

POD = MOD ×DOD (3)

where DOD and MOD are the absolute (passenger) demand and market
share for a route respectively.
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(1.1.8) The cost of operation for a single aircraft, COD, is aircraft dependent and
is a linear function of the distance for a particular route. It is comprised
of the take-off, landing and navigation costs, fuel burnt during the flight,
maintenance costs and crew costs. A fixed daily ownership cost for each
aircraft is also applied.

1.2 Overview of the methodology

(1.2.1) The following approach is taken in order to deconstruct the problem into
a manageable size for the study group:

• Analysis of a simplified point to point (P2P) model which assumes
no connecting flights, in order to determine optimal bank times.
Initially this is done without considering costs. Subsequently costs
are included in the model.

• Calculation of viable connecting flights and their influence on de-
mand.

• Improvement of the model to include a fixed fleet of aircraft and
varying passenger demand through the day.

• Development of a timetable from the improved model.

• Considerations for including competition.

In general we assume that our timetable can be formed from scratch
(i.e. there is no existing timetable from which additional constraints are
present). We also assume a single aircraft type and no capacity constraints
are imposed on the airport in terms of number of aircraft. The aim of pos-
ing the problem in this way as opposed to using a black box stochastic
optimisation of the whole problem (which Airbus can currently do) is to
allow qualitative insights into important features.

2 General approach taken

2.1 Available data

(2.1.1) The datasets provided by Airbus includes:

• The daily passenger numbers (total demand) for each origin-destination
pair in the world, which is the sum of the direct and all connecting
routes actually flown in 2009. Additionally, the average fare paid for
each origin-destination pair.

• The industry QSI (
∑N

i=1Qi) for each route and the average elapsed
time for all routes involving connecting flights.

(2.1.2) We can convert this data into a more useful format for scheduling by
assuming that a flight has a fixed total turnaround time TOD. In doing
so, graphs such as Figure 2 can be produced showing the demanded total
flight times for the P2P model.
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Figure 2: Plot of passenger demand against total turnaround time
TOD at London Heathrow (LHR). The peak just after 15hr represents
flights leaving to New York from London. The medium haul category
only represents flights with a total turnaround time up to 10hr.

2.2 Optimizing bank time in the P2P model

(2.2.1) The aim is to determine the optimal departure bank separation time b
for a given airport. In reality this can be dependent on a number of
factors, however we simplify this to analysing the demand for P2P flights
from a hub airport up to the medium haul bracket. Since we are not
considering competitors at this stage, the demand is a measure of the
revenue potential. The geography and data for Charles de Gaulle (CDG)
airport is shown in Figure 3.

(2.2.2) A penalty wt can be applied to the time hOD in hours between returning
aircraft and the following departure bank (normalised by the number of
flights nOD for that route):

wt =
∑
OD

1

nOD

(bf − TOD), bf ≥ 1. (4)

where TOD is the total turnaround time for a route and bf = kb is the
next available bank time (with integer k) such that bf ≥ TOD. The num-
ber of flights on a route is nOD = floor(DOD/c) (if more than one flight
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Figure 3: Air France operations from CDG.

is required to meet the demand), where c is the aircraft capacity. The
weighting penalizes inefficiency since the more time aircraft spend at the
hub airport between flights, the larger its value is. However, it ignores the
cost associated with operating flights and is therefore the optimal bank
time based solely on the geography of the hub. We would expect the opti-
mal bank time b to occur at 1 since 1 is the minimum time between banks
(in hours) allowable. Figure 4 demonstrates the penalty wt for varying b.
The large jumps in these graphs as bank time increases are due to the re-
duction in the total number of banks that can be operated in a single day
and hence lead to a significant increase in waiting time (e.g. the opening
hours for LHR are 0600 to 2200).

(2.2.3) The solution will clearly be different if we now investigate the optimal b
with respect to profitability since operating more aircraft increases costs.
The profit sOD for a given route is calculated as the revenue minus the
cost,

sOD = cnODfOD − CODnOD. (5)

For simplicity and since the data are not available, we do not model the
variation in fare price of a route based on time of departure. We also make
the assumption that we have a limitless fleet of aircraft.

(2.2.4) We can plot the profitability for each flight on a given route and then
eliminate those routes which are not profitable (that are assumed not to
be flown). Figure 5 shows bank time against the number of aircraft that
would be required on the profitable routes to satisfy the total demand
for a fixed QSI (i.e. fixed market share). The corresponding profitability
plot is also shown. The optimal bank time from the model for LHR is
at 4hr. In this model the number of aircraft used is equal to the number
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Figure 4: Bank time against normalised demand penalty wt for LHR.

of profitable routes and therefore fixed costs are likely to be higher than
in reality since aircraft can fly a route more than once. In addition, the
model does not account for varying passenger demand with time of day.
Therefore a better model was sought and is described later in the report.

Figure 5: Left: Bank time against number of profitable aircraft
flown. Right: Bank time against profitability.
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2.3 Connecting flights

(2.3.1) Of course not all routes originate from the hub therefore in the full hub
and spoke model connecting flights that occur via the hub need to be
represented. In order to be acceptable, a connection should not be too
circuitous i.e. does not travel excessively ‘out of the way’. A circuity ratio
y can be defined as

y =
dOH + dHD

dOD

, (6)

where dOH , dHD and dOD are distances from the origin to hub, hub to
destination and origin to destination respectively. A basic model for ac-
ceptable circuity is given by

y =


2.7, for x ≤ 1000, (7)

2.7− 1.3
x− 1000

4000
, for 1000 < x < 5000 (8)

1.4, for x ≥ 5000, (9)

where x is the total distance (km) of the route. This means, for example,
that a route which has a direct distance of 1000km will not be flown by
a connecting route with a distance greater than 2700km. This formula is
derived from empirical evidence.

(2.3.2) Daily demand in the P2P model is increased by the presence of connecting
flights. This, in turn, increases the number of profitable flights and overall
profitability as we would expect. There will also be an indirect influence
on the optimal bank time since large numbers of connecting passengers
will affect demand for certain routes. However, examples demonstrate
that this affect is minimal.

2.4 Improved model

(2.4.1) In the previous P2P model the variation in passenger demand during the
day was not considered. However, departure demand is higher at early
morning and in the evenings due to business travelers. Therefore a more
representative demand profile can be constructed by assuming demand
is constant throughout the day (POD/20) with weighted pulses (POD/10)
in the morning and evening. The time dependent (t ∈ [06, 22]) demand
profile is given by the following piecewise linear function:

P ′OD(t) =



POD

20
t, for 06 ≤ t ≤ τ1, (10)

POD

20
t+

POD

10
, for τ1 < t ≤ τ2 (11)

POD

20
t+

2POD

10
, for τ2 < t < 22, (12)
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where τ1 and τ2 are the times at which pulses representing business passen-
ger demand occur. The relative weighting of the pulses is an estimate in
the model but can be modified to reflect reality for each individual route.

(2.4.2) The algorithm shown in Figure 6 is implemented. A fixed number of
aircraft are available from the hangar. They are sent on the most profitable
routes at full capacity to meet the demand profile. Once they return after
turnaround time T , they are again available to take passengers. If no
profitable flight is available at a particular bank, then no aircraft is flown
and we wait until the next bank. The model is run for varying bank times
and aircraft numbers. Initially, a QSI based on running a single aircraft
on each profitable route everyday was used. After each iteration the QSI
(and hence demand) is updated to reflect the number of aircraft flown on
the route. This is done until a stable QSI is reached - when there is not
enough increase in demand to allow a new profitable flight.

Figure 6: Algorithm for the improved model.

(2.4.3) Using the improved model the results obtained are shown in Figure 7.
The profit is maximised with six aircraft and a bank time of 5.4hr. The
solution corresponds to a daily timetable given in Appendix A.2. In re-
ality, LHR operates at near capacity and a conventional bank structure
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is not observed. However, the optimal bank time given by the model is
larger than expected (typically 2-4hr). We can see from the graph that
profitability is extremely sensitive to bank time and therefore operating at
a peak bank time would leave an airline prone to disturbances and delays.

Figure 7: Bank time against profit-cost ratio for the improved model.

(2.4.4) Further improvements which can be considered but were not implemented
due to time constraints are:

• In the model multiple aircraft depart at a bank which is unrealis-
tic since aircraft cannot take-off simultaneously. A better approach
would be to model the departure as a Gaussian random variable with
a mean at the bank time. This framework also allows the modeling
of delays. Monte Carlo simulations can then be performed to as-
sess profitability against bank time. The impact of the variance in
departure time on profitability could also be analysed and a robust
timetable found.

• Other improvements can be made to the existing model including
the consideration of connecting flights and long haul traffic. Long
haul flights tend to arrive early in the morning or late at night co-
inciding with the business demand peaks whilst connecting flights
would increase demand throughout the day.
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2.5 Competition and game theory

(2.5.1) Whilst there was little time in the study group to address competition,
[1] is a useful starting point. In this work a passenger preference model is
adopted which is a function of desired travel time, the duration and the
price of the route. The penalty function wt then becomes

wt = w1dOD + w2fOD + w3|t− t′| (13)

where dOD is the distance for that route, fOD is the fare, t represents
the passenger’s ideal departure time and t′ is the actual departure time.
The weights w1, w2 and w3 can be set according to market research data.
Using this penalty function, the demand for route OD is shown to be a
weighted logistics function (see [1] for details). Note that unlike the QSI
model used previously, demand is now a function of the fare.

(2.5.2) In [1], competition in both schedules and prices between airlines sharing
a common hub is explored. This is an oversimplification since airlines
operating the hub and spoke system (national carriers) have different hub
airports. A brief summary of the approach is given here. The following
assumptions are made:

• The set of competing airlines is known and all airlines use the same
hub. Each airline can choose its flight schedule and route fare.

• Customer demand is based on (13).

• Each airline can alter its prices and schedule at any time and at no
cost.

The third assumption means that each airline will choose its fares and
schedules to optimize against the others’ current choices, which is equiv-
alent to a Nash equilibrium for the game where airlines choose schedules
and prices simultaneously. See Appendix A.3 for a more detailed explana-
tion of the Nash equilibrium. The third assumption, however, is in general
not true since landing rights and take-off slots are not readily traded at
hubs and so transactional costs are expected to be high.

(2.5.3) It is possible to expand the game theory approach to account for additional
constraints including transactional costs. Further complexity can be added
by including multiple hubs. This is an approach that can be explored in
more detail through further work.

3 Conclusions

3.1 Remarks

(3.1.1) The design of aircraft timetables is a complex problem with a large number
of factors to take into consideration. In the report simplified models have

10



Scheduling of Next Generation Timetable Systems ESGI80

been described for the hub and spoke system and some insights into the
most important parameters noted. We have demonstrated how optimal
bank times can be chosen by simply considering the geography of the
airport, or in a more advanced model by considering the airline’s market
share through use of the Quality of Service Index.

(3.1.2) The models show that profitability is highly sensitive to choice of bank
time and due consideration needs to be paid to it when airlines determine
schedules. The ideas presented in the study provide a starting point from
which complexity can be added to the modelling.

3.2 Suggested further research

(3.2.1) Analysis of the competition is an important factor in scheduling airline
operations. The game theory approach which is discussed briefly in this
report would be a good way to address this through simple hub and spoke
models. However, it is important to note that computing equilibria etc.
can be difficult where large numbers of competitors are present and the
decision vector is of high dimensionality.

(3.2.2) Availability and cost of take-off and landing slots at an airport are im-
portant factors in scheduling considerations and have not been considered
in this study. For example, profitability might be maximized by utilizing
cheaper take-off and landing slots which would lower costs, despite the
lower demand for flights at these times.

(3.2.3) Additional constraints such as airport and runway capacities play a role.
In particular, they affect the assumption that departures and arrivals can
occur simultaneously. It would be possible to build these into a more
complex model.

(3.2.4) To reduce complexity a fixed bank time was assumed in the study and in
general this is observed at real airports. However, a varying bank structure
might increase profitability and should be considered.

(3.2.5) In a hub and spoke model arrivals from connecting flights are assumed
to occur before departure banks. However, if multiple hubs are present,
optimizing against another airline’s schedule at a separate hub might be
required and the merits of doing so should be considered.

(3.2.6) As an aside, boarding efficiency was discussed during the study group with
the general premise that boarding by blocks is less efficient than random
boarding. This problem has been studied in detail and the results can be
found in [3] along with simulations of the different boarding strategies.
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A Appendix

A.1 Calculation of the Quality of Service Index

(A.1.1) The QSI is calculated as

Q = C1C2C3C4, (14)

where each component Ci is a function of a different variable. The com-
ponent C1 relates to aircraft size and for jets is given by

C1 = 0.3728 + 0.00454c, (15)

where c is the capacity of the aircraft. The component C2 relates to
whether the flight is direct or not and is given by

C2 =

{
1, for direct flights, (16)

0.03, for connections. (17)

The component C3 is the actual flight frequency per week i.e. if an airline
flies 7 times to a destination in one week C3 = 7. The final component C4

relates to the elapsed time and is

C4 =

{
1, for direct flights, (18)

a−0.675, for connections, (19)

with

a =
( actual elapsed time

average elapsed time for all connections

)
. (20)

Recalling that the coefficients in the QSI have been calculated from large
empirical data sets there are some interesting characteristics to note -
connecting flights have very low demand if a direct flight is available and
frequency of flights is a dominating factor.

A.2 Timetable obtained from improved model for LHR

The timetable produced by the improved model is given in Table 1. There
are six operating aircraft and the bank time is 5.3hr which allows 4 banks
per day.

A.3 Nash equilibrium

(A.3.1) In game theory, the Nash equilibrium is a solution concept involving two
or more players, in which each player is assumed to know the equilibrium
strategies of the other players, and no player has anything to gain by
changing only his own strategy unilaterally. If each player has chosen a
strategy and no player can benefit by changing his or her strategy while
the other players keep their own strategies unchanged, then the current

12
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Destination airport code Time of departure
BHD 0600
LIN 0600

DME 0600
NCE 0600
AMS 0600
DUB 0600
BCN 1118
BFS 1118
ORK 1118
FRA 1118
DUS 1118
GOT 1636
SVG 1636
CDG 1636
EDI 1636
KEF 1636
GLA 1636
MLA 2154
ARN 2154
MAD 2154
BHD 2154
CPH 2154

Table 1: Timtable

set of strategy choices and the corresponding payoffs constitute a Nash
equilibrium. However, the Nash equilibrium does not necessarily mean
the best cumulative payoff for all the players involved. In many cases all
the players might improve their payoffs if they could somehow agree on
strategies different from the Nash equilibrium (e.g. competing businesses
forming a cartel in order to increase their profits) [2].

(A.3.2) A formal definition of the Nash equilibrium is as follows. Let (S, f) be a
game with n players, where Si is the strategy for player i, S = S1×S2...×
Sn is the set of strategy profiles and f = (f1(x), ..., fn(x)) is the payoff
function. Let x−i be a strategy profile for all players except for player
i ∈ {1, ..., n}. When each player chooses strategy xi giving an overall
strategy profile x = (x1, ..., xn), then player i obtains payoff fi(x). The
payoff depends on the strategies of all players. A strategy profile x∗ ∈ S
is a Nash equilibrium if no unilateral deviation by any single player is
profitable for that player, i.e.

{x∗ | fi(x∗i , x−i) ≥ fi(x
∗
i , x
∗
−i), xi ∈ Si, xi 6= x∗i ,∀i}. (21)
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