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Executive Summary

Toxic liquid chemicals released into the environment may pose an imme-
diate risk to human health through contact or related vapour hazards.
However, they can also interact with surfaces and remain in situ, poten-
tially presenting a subsequent hazard. To improve understanding of the
fate of these materials in different environments, the study group inves-
tigated interactions between liquid droplets and porous media across a
range of different time scales.
Splashing and the subsequent re-entrainment of micro-droplets into the
atmosphere was identified as one possible mechanism though which the
area effect of a contamination could be significantly increased. The
study group looked at experimentally determined splashing thresholds
for droplet impacts with impermeable substrates, to determine initial
predictions of whether or not a given droplet will splash. In cases where
splashing occurs the droplet inertia is the most significant effect driving
the initial phase of the liquid infiltration into a porous media and the
study group developed a model to investigate this behaviour.
For longer time scales the study group determined that capillary suction
played the most significant role in spreading the liquid within the porous
medium. Models for the evolution of the partial saturation within a
porous medium based on Richards’ equation were investigated. Over
even longer time scales evaporation converts the liquid back into a po-
tentially hazardous vapour. The study group started to incorporate
evaporation into models of liquid infiltration in a porous medium in
order to describe this phenomenon. Recommendations for future theo-
retical, numerical and experimental modelling are also provided.
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1 Introduction

1.1 Background and scope

(1.1.1) Many toxic industrial chemicals and chemical warfare agents enter the
environment in the form of liquid droplets. These liquid droplets can
impact and subsequently interact with a wide range of different surfaces.
If a droplet hits an impermeable surface, then it is comparatively easy
to remove by cleaning the solid surface. However, if the solid is porous,
then some of the liquid may enter the pore spaces of the solid, from where
it is much harder to remove. Even after the remains of a liquid droplet
have been cleaned from the surface of the solid, the liquid held within the
pore spaces can escape back to the surface, though either liquid seepage
or (after evaporation), in vapour form; potentially causing a hazard.

(1.1.2) The Defence Science and Technology Laboratory [DSTL] are keen to un-
derstanding how liquid droplets interact with porous surfaces in order to
understand how droplets may enter the materials pore spaces and how
long they persist inside them. A greater understanding of these processes
will potentially help mitigate the long term hazards associated with the
release of industrial chemicals and chemical warfare agents.

(1.1.3) Interactions between liquid droplets and porous media can have a multi-
tude of different outcomes depending on the relative length scales associ-
ated with the droplet and the pore size. After discussion with DSTL, the
study group focussed on problems in which the characteristic length scale
of the droplet is typically much larger than the length scale of a pore,
so that there is a well defined interface marking the edge of the porous
media. It is with this surface that the droplet first makes contact. The
study group noted that if the typical size of the droplets is equal to or is
significant less than typical the pore size, then significantly different dy-
namics and interactions will result. Interactions in this regime where not
investigated in the study group, but could include many interactions of
interest to DSTL, such as the interaction tiny between aerosolized liquid
droplets and porous surfaces.

(1.1.4) After discussion with DSTL the study group focussed on droplets with
volumes between 0.1 and 10µL. These droplets have an equivalent range
for their undisturbed diameters of between 0.29 and 1.34mm. Droplet
velocities upon contact with the porous media of up to 5m s−1 were con-
sidered; an upper limit that is determined by the free-fall velocities of
droplets under gravity released from rest within a room. It was noted
that in the event of an explosive release of the liquid droplets, the impacts
speeds with the porous media are likely to be significantly greater. The
study group focused on three different liquids: Sarin, Sulphur Mustard
and VX. Further properties of these substances are provided in Table 3.
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(1.1.5) The study group considered a range of different porous materials, but
focussed specifically on interactions of droplets with sand and concrete.
These two materials encompassed the range of porosities and permeabil-
ities that were of interest to DSTL. Further details of the properties of
these porous media are given in Table 4. The study group noted that
sand is a granular material and that the impact of a liquid droplet may
move individual grains and deform the interface of the sand. The conse-
quences of the deformation of any of the porous media is not considered
in this report.

(1.1.6) One of the key problems considered by DSTL and the study group was
to identify the different phases of a droplet impact and interaction with
a porous media and to try an quantify the time scales over which the
different types of interaction correspond to the dominant behaviour. To
address this problem, this report describes the processes associated with
droplet interactions with porous media in increasing time scales, starting
with the initial droplet impact and splashing (or otherwise) in section 2.
In sections 3 and 4 two different models are outlined, which describe the
infiltration of a liquid droplet through the surface of a porous media and
its subsequent evolution within the porous media. Finally, section 5 briefly
describes possible approaches that could be used to model the longer time
evaporation of the liquid within the pore spaces. Conclusions are drawn
and recommendations for future work are made in section 6.

2 Droplet splashing upon impact with porous me-
dia

2.1 Droplet splashing upon impact with a flat impermeable
plate

(2.1.1) If a droplet splashes during an impact, then the generation of splash
ejecta in the form of micro-droplets allows the material contained within
a droplet to be entrained in the air and subsequently spread over a much
larger area than if the droplet had not splashed on impact. Often these
small micro-droplets can be carried in an airflow significant distances from
the initial droplet impact site and greatly increasing the zone over which
contamination occurs.

(2.1.2) Theoretical and experimental investigations of droplet impacts onto porous
media are very much in their infancy. High-speed photography has cap-
tured the impact of droplet into a granular powder [16], and this may pro-
vide some insight into the possible behaviours associated with impact with
sand. However, further investigation of droplet impacts with porous sub-
strates would be beneficial, not just for the problem presented by DSTL,
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but also for a wide range of other important physical problems such as
printing on clothes and pesticide uptake in soils.

(2.1.3) Research into droplet impacts with impermeable substrates is more estab-
lished, and many theoretical and experimental studies have investigated
this problem. If a droplet has sufficient inertia when it impacts an imper-
meable substrate, then it initially forms a thin liquid jets that runs radially
out from the impact site, across the surface of the substrate. Following
the definition of Mundo et al. (1995) [18], a splash occurs when these
splash jets separate from the substrate and break up in the air to form
micro-droplets. However, a full description of the mechanism detailing all
the factors responsible for the lift off of a splash jet is unavailable at this
time.

(2.1.4) In the absence of theoretical and experimental results detailing droplet
impacts with porous surfaces it makes sense to ask what are the conditions
which lead to splashing in droplet impacts with an impermeable substrate?
Subsequently the differences that may result from a porous substrate can
be evaluated. Mundo et al. (1995) [18] experimentally determined that
the onset of splashing for droplet impacts with flat impermeable horizontal
plates is given by

Oh Re5/4 > 57.7 (1)

where the Ohnesorge and Reynolds numbers are given by

Oh =
µ√
ρDσ

, and Re =
ρV D

µ
, (2)

respectively. The Ohnesorge number relates the viscous forces to inertial
and surface tension forces, while the Reynolds number is a measure of the
ratio of inertial forces to viscous forces on the droplet. These quantities are
based on a droplet of diameter D, impact velocity V , density ρ, viscosity
µ and surface tension σ.

(2.1.5) Figures 1, 2 and 3 show the splashing threshold (1) for droplets of Sarin,
sulphur mustard and VX, respectively. To give an indication of droplet
impact speeds, the impact speeds for spheres of equivalent diameter re-
leased from rest are also plotted for release heights of 0.1, 0.2, 0.3, 0.4
and 0.5metres above the impact site. This shows that for very small
droplets released close to the ground surface will not splash, but for larger
droplets (corresponding to the majority of the parameter range of interest
to DSTL), splashing will occur upon impact with an impermeable solid.
As the viscosity of the fluid increases, the propensity of a droplet to splash
reduces, with Sarin (the least viscous fluid), being most likely to splash,
followed by sulphur mustard with VX (the most viscous liquid), being least
likely to splash. However, even with VX, the largest droplets of interest
to DSTL will splash when released from heights over 0.1m.
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Figure 1: A regime diagram showing the experimentally determined condition
for the onset of splashing for a droplet of Sarin, with splashing predicted
for impacts above the solid blue line. Also shown are the impact speeds
for droplets released from rest from 0.1, 0.2, 0.3, 0.4 and 0.5m above the
substrate.
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Figure 2: As figure 1, but showing the splashing threshold and impact speeds for
droplets of sulphur mustard.
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Figure 3: As figure 1, but showing the splashing threshold and impact speeds for
droplets of VX.

(2.1.6) The experimentally determined relationship (1) is only valid for droplet
impacts close to atmospheric pressure and it is known that at lower am-
bient gas pressures the tendency for a droplet to splash is suppressed [27],
while small changes in the roughness of the solid surface are also critical
for triggering splashing [14]. However, equation (1) does suggest that for
droplets of the size that is of interest to DSTL, that splashing will occur
upon impact with a rigid impermeable substrate. The next question to
consider is how does a porous substrate change this conclusion.

2.2 Initial stages of a droplet impact on a porous medium

(2.2.1) Little work has been done on the effect of roughness and surface porosity
on splashing. More experimental data is needed to determine the splash
threshold condition for droplets impacting a porous media. In impacts
with a porous medium, additional factors over and above those associ-
ated with impact with a flat impermeable substrate will effect the out-
come. These additional effects including the surface roughness, porosity
and permeability of the porous medium.

(2.2.2) For much of the parameter range of interest, the initial stages of a droplet
impact is dominated by inertia of the droplet. The effect of viscosity,
surface tension and gravity on the droplet motion can be neglected if the
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Reynolds number, the Weber number and the Froude number given by

Re =
ρV D

µ
= 3170.0, (3a)

We =
ρV 2D

σ
= 339.0, (3b)

Fr =
V 2

gD
= 204.0, (3c)

respectively, are all much greater than one. The numbers shown corre-
spond to a droplet of Sarin with an undisturbed diameter D = 1mm and
an impact speed V = 2ms−1, and indicate that inertia dominates the
initial stages of the droplet impact and effects due to viscosity, surface
tension and gravity can be neglected at least initially. After this initial
stage of the impact, the effect of viscosity and surface tension will become
more significant. However, it is of interest to consider this initial inertia
dominated phase of a droplet impact with a porous medium as it deter-
mines the splashing behaviour. The corresponding Ohnesorge number for
these droplet parameters Oh = 0.006, while from equation (1), the splash-
ing criterion Oh Re5/4 = 138.3 indicating splashing is to be expected if
this droplet impacts a rigid impermeable surface.

z

xd-d

Splash jets

Figure 4: An idealized liquid droplet impacting on a solid surface, showing the
formation of splash jets running over the solid surface.

(2.2.3) In a small region surrounding the point where (an idealized two dimen-
sional), droplet initially touches down on a porous medium, the velocity
potential associated with the fluid φ, can be modelled by a mixed bound-
ary value problem with the form

∇2φ(x, z, t) = 0,
φz(x, 0, t) = −1 + V (p) , |x| < d(t) ,
φ(x, 0, t) = 0, |x| > d(t) ,
φ→ 0, x2 + z2 →∞,

(4)
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where the penetration velocity of liquid into the porous media is denoted
V (p). Here we consider a penetration velocity with the form

V (p) = Vdrop(x, 0, t)− Vbody(x, 0, t) = αp0(t) , (5)

where p0(t) = p(0, 0, t), and α is proportional to the porosity (see fig-
ure 4). The region |x| < d(t) is called the contact patch inside which the
body of the droplet is in contact with the substrate, while outside the
contact patch only liquid jets are in contact with substrate. This prob-
lem is called a mixed boundary value problem because different boundary
conditions are applied inside and outside the contact patch region.

(2.2.4) Mixed boundary value problems such as this have previously been used
to model the initial stages of blunt impermeable body impact with water
[12, 20], of which droplet impact with a flat impermeable substrate is just
a special case. Extensions of the basic theory covering droplet impacts
have included impacts with rough impermeable substrates [8], and thin
liquid layers [22, 11]. Mixed boundary value problems have also been used
to model the entry of a porous wedge into a much larger body of liquid
[17, 13]. A porous wedge has a sharp point where the body initially enters
the liquid domain and prior to the study group no attempt has been made
to model the impact of a liquid with a blunt porous body (such as the
impact of an initially circular droplet with a porous substrate).

(2.2.5) The solution to the mixed boundary value problem (4) is given by

p(x, 0, t) = −αṗ0
√
d2 − x2 − ḋ

2
(−1 + αp0)

(√
d− x
x+ d

−
√
x+ d

d− x

)
, (6)

and in particular the pressure below the centre point of the droplet is given
by

p0 = −αṗ0d− αp0ḋ+ ḋ, for x = 0. (7)

(2.2.6) The limits of the contact patch d(t), are determined by Wagner’s condi-
tion, which states that the elevation of the free surface must equal the
elevation of the solid body at the contact point. For an impermeable
body (α = 0) the contact patch grows like d(t) =

√
2t [20], while for a

completely permeable body the droplet does not deform and geometrical
considerations imply d(t) =

√
t.

(2.2.7) This suggest an ansatz for small time t, with the form:

d(t) = a
√
t for a ∈

[
1,
√

2
]
, (8a)

p0(t) = b+ ctλ. (8b)
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A solution to this problem is obtained with a = 1, b = α−1, c = −α−2 and
λ = 1

2
. For small time this solution has the form

d(t) =
√
t+ positive higher order correction; (9a)

p0(t) =
1

α
−
√
t

α2
, (9b)

while the penetration depth into the porous medium is given by

H = α

∫ t

0

p0(τ) dτ = t− 2t3/2

3α
. (9c)

Penetration depths for small α (an impermeable substrate), α = 1 and
α large (a fully permeable substrate), are sketched in figure 5 and show
that the depth of the initial inertia driven penetration increases with the
porosity of the medium.

P
en

et
ra

tio
n 

de
pt

h,
 d

(t
)

Time, t

α = 0
α = 1

α large

Figure 5: Idealized penetration depths as a function of the parameter α.

(2.2.8) These preliminary results suggest that the initial impact pressure in a
droplet impact with a porous substrate is less than the pressure in an im-
pact with an impermeable body, from which we tentatively postulate that
the splash jets running over the substrate surface may have reduced veloc-
ity compared to their counterparts created in impacts with impermeable
substrates. Additionally the size of the wetted contact patch decreases
as the porosity rises, inertia is responsible for forcing liquid into the pore
spaces and the penetration depth is dependent upon the porosity. The
study group believes that a mixed boundary value problem like this is a
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good way of analysing the inertia dominated phase of a droplet impact
and also of verifying the initial predictions from numerical simulations of
droplet impact. The modelling herein assumes the infiltration velocity
throughout the contact patch is determined just by the pressure below
the centre point of the droplet (see equation (5)). Given more time a cou-
pled problem in which the infiltration velocity is determined by the local
pressure at each point, i.e.

V (p) = Vdrop(x, 0, t)− Vbody(x, 0, t) = αp(x, 0, t) , (10)

provides an excellent candidate for further study.

(2.2.9) These results qualitatively support the full numerical calculations Reis et
al. [23, 24], who show the horizontal spreading of a droplet is reduced and
the penetration depth increases as the porosity of the substrate rises. The
study group notes that although these results and existing numerical calcu-
lations [23, 24] predict the splash jets running over the surface of a porous
substrate will have lower velocity in an impact with a porous medium
relative to an impermeable substrate, this does not necessarily mean the
likelihood of these splash jets detaching from the surfaces is reduced. On
the contrary, small changes in surface roughness (which might be expected
on the surface of a porous substrate), more readily trigger splash jet lift off
[14]. The competing effects of porosity and surface roughness on droplet
splashing are a long way from being fully understood and the study group
suggests further theoretical, numerical and experimental investigations are
required to better understand these important phenomena.

3 Two zone models of droplet infiltration into porous
media

3.1 1D Darcy model of droplet infiltration

(3.1.1) After the inertial impact, the droplet will continue to be drawn into the
porous medium by three processes: gravity acting on the whole droplet,
surface tension acting at the top surface of the drop, and capillary suction
acting at the interface between the droplet and the unsaturated porous
medium.

(3.1.2) Capillary suction arises from surface tension effects between the porous
medium and the liquid, which act to draw fluid into the pore spaces.
Surface tension σ causes a pressure drop across the interface, Pc, which
can be estimated [6] as

Pc =
2σ cos θ

b
, (11)

9
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where θ is the contact angle for that particular liquid-solid pairing, and b
is a characteristic pore size. The value of b is typically measured experi-
mentally using mercury porosimetry [10].

(3.1.3) For the liquids of interest here σ is typically 0.03 Pa m−1. Assuming a
contact angle of 45◦, and pore-sizes in the range 0.5 µm−50 µm, suggests
that typical values for the capillary suction pressure are in the range 103−
105 Pa. These values are sufficiently large that the effect of capillary
suction is likely to dominate the effects of gravity and surface tension at
the droplet-air interface in the absorption process. Therefore, for the rest
of this section, we assume that the flow is driven by capillary suction alone.

(3.1.4) The effect of capillary suction is most simply modelled by considering a
one-dimensional flow where we assume that a sharp front exists between a
fully saturated region and an unsaturated region (Figure 6). The flow in
the fully saturated region can be modelled by Darcy’s law, and is driven
by the pressure drop Pc across the advancing saturation front. Such a
model has previously been considered in the literature [1, 6].

z = 0

z = h

z = −H

[w] = 0

p = −pc

DARCY'S LAW

p ≈ 0

E

Figure 6: 1D model of droplet absorption due to capillary suction. There is
assumed to be a sharp front between a fully saturated region, of height H,
and the dry porous medium beneath. The height of liquid above the porous
medium is h.

(3.1.5) Darcy’s law applied to the fully saturated region of depth H gives an
expression for the average fluid velocity within the medium, w, and, con-
sequently, for the rate at which the front of the saturated region advances
into the porous medium

φ
dH

dt
= w =

k

µ

Pc
H
. (12)

In this expression µ is the viscosity of the fluid, φ the porosity of the porous

10
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medium and k the permeability of the porous medium; all of which we
assume to be constant.

(3.1.6) Solving this differential equation gives an expression for the rate at which
the front propagates into the porous substrate

dH

dt
=

√
kPc
2µφt

, (13)

and an expression for how the depth of the front evolves with time

H =

√
2kPct

µφ
. (14)

(3.1.7) The height h of the fluid layer above the surface is initially h0, and evolves
according to

h = h0 −
√

2kPcφ

µ
t1/2 − Et, (15)

where we have also included the effect of an evaporative loss from the
surface of the liquid, modelled as a constant velocity E.

(3.1.8) We note that, in the absence of evaporation (E = 0), the liquid interface
has penetrated a distance h0/φ into the porous medium by the time that
the droplet is fully absorbed.

(3.1.9) Under this simple model, the propagation of the fluid interface stops
as soon as the droplet is fully absorbed into the porous medium, at
which point the capillary suction at the liquid interface within the porous
medium is balanced by a similar suction acting in the opposite direction
at the top surface. Investigation of the later time evolution of the droplet
within the porous medium requires a more detailed model able to capture
the behaviour of a semi-saturated region.

3.2 Time scales for droplet absorption

(3.2.1) This simple one-dimensional model gives us a prediction for the time scale
over which the drop will be fully absorbed into the porous medium

Tdrainage =
h20µ

2kPcφ
=

h20µb

4kφσ cos θ
. (16)

In this expression k, φ and b are properties of the solid, and as such only
need to be measured once for each solid substrate. Similarly µ and σ are
properties of the liquid only. The only parameter that depends on the
particular liquid-solid substrate pairing is the contact angle θ, which can
be easily measured experimentally.

11
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(3.2.2) This drainage time scale can vary drastically between different porous
media (e.g. sands with different grain sizes) because b and k both vary
over multiple orders of magnitude. The time scales are discussed further
in section 4.4.

3.3 Richards’ equation

(3.3.1) A more realistic model for the evolution of the liquid within the porous
medium is obtained by allowing for the presence of a semi-saturated region
within the porous medium, in which only a fraction 0 ≤ S ≤ 1 of the pore
space is filled with liquid.

(3.3.2) Flow in a semi-saturated porous medium is governed by Richards’ equation
[25]

φ
∂S

∂t
= ∇· (D0D(S)∇S) , (17)

where D0D(S) is the diffusivity of liquid at saturation S within the porous
medium. D0 can be expressed in terms of liquid and solid properties as
D0 = ckPc/µ for some dimensionless constant c (which can be absorbed
into the definition of D(S)).

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

n = 1.5
n = 2
n = 3

S

D(S)

Figure 7: Form of D(S) as given by equation (18), for n = 1.5, 2 and 3.

(3.3.3) The form of the dimensionless function D(S) (and the value of c) depend
on the structure of the porous medium and on the contact angle θ. The
behaviour of D(S) for small values of S determines whether a sharp front
forms between the semi-saturated region and the dry region below, and
also determines the rate at which the liquid propagates through the porous
medium at long times. We choose to work with

D(S) =
n

2
Sn
(

1− Sn

n+ 1

)
, (18)

12
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which has a completely general power-law behaviour for small S. The
behaviour of D(S) for large S is less realistic, but does allow for analytic
solution of the equations. The variations of D(S) with S, for a several
typical values of n associated with porous media, are shown in Figure 7.

3.4 1D Similarity solution - short time

(3.4.1) We again consider a one dimensional model for the evolution of the droplet
within the porous medium. However, now we replace the fully saturated
region from our earlier model (Figure 6) with a partially saturated region
where flow is governed by the one dimensional Richards’ equation

φ
∂S

∂t
=

∂

∂z

(
D0D(S)

∂S

∂z

)
. (19)

(3.4.2) While the drop remains on the surface, the boundary condition at the top
boundary of the porous medium is S(0, t) = 1, i.e. the top of the porous
medium is fully saturated.

(3.4.3) The subsequent evolution of S can be calculated analytically [26] and
exhibits a self-similar behaviour (c.f. diffusion of heat in a metal bar heated
at one end). The evolution is given by

S(η) = (1− η)1/n, (20)

where

η ≡
(
φ

D0

)1/2
x

t1/2
. (21)

(3.4.4) The solution forms a sharp front at η = 1 between the partially-saturated
porous medium and the dry porous medium below. The shape of the
solution, for n = 2, is shown in Figure 8. The depth of the front grows
as (D0t)

1/2; this t1/2 growth is completely independent of the choice of
D(S), and agrees with our earlier model based on a fully saturated region
governed by Darcy’s law.

(3.4.5) This solution continues to be valid until the droplet is fully absorbed from
the surface. The time taken for absorption depends on the exact form
of D(S), but otherwise has the same functional depedence on liquid and
solid parameters as the earlier Darcy model.

3.5 1D Similarity solution - long time

(3.5.1) Once the droplet has been fully absorbed, a boundary condition of S(0, t) =
1 at the surface of the porous medium is no longer appropriate. Instead, in
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Figure 8: Shapes of self-similar solutions for the case n = 2. Short-time solution
when droplet is not fully absorbed (left) and long-time solution after droplet
has been absorbed (right).

the absence of any evaporation from the surface, there should be a no-flux
constraint

−D0D(S)
∂S

∂z
= 0. (22)

This is equivalent to requiring that the total volume of liquid within the
porous medium remains constant∫ zfront

0

φS(z, t) dz = h0. (23)

(3.5.2) At long times, we can make a small S approximation to the diffusivity

D(S) ≈ n

2
Sn (24)

and it is again possible to find a self-similar solution

S(z, t) ≡ h0
φ

f(η)

z
, (25)

where

f(η) = η

(
c(n)− η2

n+ 2

)1/n

and η ≡
(
φ1+n

D0hn0

)1/(2+n)
z

t1/(2+n)
. (26)

The constant c(n) is determined by the constraint∫ ηfront

0

f(η)/η dη = 1. (27)

(3.5.3) There is still a sharp front between the semi-saturated porous medium
and the dry porous medium beneath, but the rate of spread has slowed,
from the earlier t1/2 while the droplet was on the surface, to t1/(2+n).
Importantly, the long time evolution rate of the front depends on n and,
consequently, on the form of D(S).
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Figure 9: Numerical solution of Richards’ equation with n = 2 (solid lines). The
drop is fully absorbed into the porous medium at t = 5. Short and long time
similarity solutions are also shown (dashed lines) and are in good agreement
with the full numerical solution. The spreading of the front is observed to
slow from t1/2 to t1/4 once the droplet is fully absorbed (inset).

(3.5.4) The one dimensional Richards’ equation can be solved numerically in order
to verify to two self-similar solutions. Such a numerical evolution for the
case n = 2 is shown in Figure 9. While the droplet is on the surface,
there is good agreement with the first similarity solution. Then, after
a transient transition period, there is good agreement with the second
similarity solution.

3.6 3D Similarity solution - long time

(3.6.1) For a single droplet, a one-dimensional model is not particularly realistic
at long times, since the droplet can be expected to spread out laterally as
well as vertically within the porous medium. Instead, at long times, the
droplet can be viewed as a point source release of a finite quantity of fluid,
leading to a radially symmetric solution S(r, t) of Richards’ equation

φ
∂S

∂t
=

1

r2
∂

∂r

(
r2D0D(S)

∂S

∂r

)
, (28)

which satisfies a fixed volume (V0) constraint∫ rfront

0

φS(r, t)4πr2 dr = V0. (29)

(3.6.2) Making the small S diffusivity approximation

D(S) ≈ n

2
Sn (30)
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again allows for a self-similar solution

S(r, t) ≡ V0
4πφ

g(η)

r3
. (31)

where

g(η) = η3
(
d(n)− η2

3n+ 2

)1/n

and η ≡
(
φ1+n(4π)n

D0V n
0

)1/(2+3n)
z

t1/(2+3n)
.

(32)
The constant d(n) is determined by the constraint∫ ηfront

0

g(η)/η dη = 1. (33)

(3.6.3) The main difference, when compared to the earlier one-dimensional solu-
tion, is that the spreading rate in three dimensions is t1/(2+3n), which is
slower than the t1/(2+n) spreading rate of the one-dimensional solution.

4 Three zone models of droplet infiltration into porous
media

4.1 Three Zone Model

(4.1.1) A two-region model insinuates a passive diffusion mechanism in the porous
media because the only reason pores fill is due to the strong capillary pres-
sure between the heavily saturated droplet and the porous media which
is vacuous in liquid. However, if a droplet of liquid impacts a porous
medium with a sufficiently large force or pressure, then without consid-
eration of porous pressure-driven flows, the impact of the liquid on the
porous surface will fill some of the pores immediately to full saturation
(as demonstrated in section 2.2). For this reason, one might expect the
creation of a thin, fully-saturated region near the surface of the porous
medium; a third zone which separates the liquid droplet from the passive
porous diffusion layer. If this is indeed the case, then capillary suction
from the unsaturated region will draw fluid from the fully-saturated re-
gion and not from the droplet. The dominant mechanism for driving fluid
from the droplet into the porous medium is then expected to be pressure
gradients between the droplet and the fully-saturated region. The exis-
tence of this fully-saturated region will be explored by extending the above
two-zone model to include this region.

4.2 1D Model: Governing equations

(4.2.1) We consider a simplified one-dimensional model of this three zone struc-
ture as depicted in Figure 10. The pressure, velocity, and time variables
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are non-dimensionalized using the respective scales

P = Pc, W =
kPc
µH

, T =
Hφ

W
, (34)

where Pc is a reference capillary pressure, H is the initial height of the
droplet, W is the fluid velocity, ρ is the density of the droplet, k and φ are
the permeability and porosity of the porous medium, respectively, and g
is the acceleration due to gravity. Typical values are presented in Table 1.

z = 0

Fluid

z = h1(t)

Fully-saturated region

Partially-saturated region

Unsaturated porous media

z = h2(t)

z = h3(t)

Air

Figure 10: When droplet impact is considered, a fully saturated middle layer
may appear which separates the droplet from the porous diffusion layer. The
capillary pressure then has the role of drawing this saturated layer further
into the soil. The voids left in the saturated region from such a mechanism
are resaturated by liquid from the droplet.

(4.2.2) In the fluid region above the porous medium, i.e., the droplet, we consider
the Navier-Stokes equations. The one-dimensional dimensionless equa-
tions read

Re

(
1

φ

∂w

∂t
+ w

∂w

∂z

)
= − 1

Da

∂p

∂z
+
∂2w

∂z2
− 1

Da
G, (35)

∂w

∂z
= 0. (36)

where

Re =
ρWH

µ
, Da =

k

H2
, G =

ρgH

Pc
, (37)

are the Reynolds number, the Darcy number, and an effective gravity
force, respectively. Values for these non-dimensional numbers are pre-
sented in Table 1.
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Table 1: Relevant parameter values for the three-zone mode. Parameter values
come from either [15], equation (37), equation (34), or are provided by DSTL.

.
Parameter Value Description

H 1×10−3m Height of droplet
k 1×10−11m2 Reference permeability
φ 0.40 Porosity
µ 1×10−2Pas Reference fluid viscosity
ρ 1× 103kg/m3 Reference fluid density
E 1×10−1kg/m2/s Evaporation coefficient
γ 1×10−2N/m Liquid-air surface tension coefficient
Pc 1×103Pa Reference capillary pressure
g 10N/kg Earth gravitational constant
W 1×10−3m/s Effective porous velocity
Re 1×10−1 Reynolds number
Da 1×10−5 Darcy number
G 1×10−2 Gravity number

(4.2.3) In the fully-saturated porous medium region we consider pure Darcy flow
with a constant permeability. For this reason we will refer to this fully-
saturated region as the Darcy region. The one-dimensional dimensionless
equations read

w̄d = −∂p̄d
∂z

+G, (38)

∂w̄d
∂z

= 0. (39)

(4.2.4) Finally, in the partially-saturated region, we again consider Richards’
equations and assume a Darcy-like fluid velocity where the pressure in
this region, p̄s, is prescribed (this will be elaborated on below). In partic-
ular, we have

∂S

∂t
=

∂

∂z

(
D(S)

∂S

∂z
− κ(S)G

)
, (40)

p̄s = −j(S), (41)

w̄s = −D(S)
∂S

∂z
+ κ(S)G, (42)

where κ(S) is the saturation dependent permeability, D(S) is the dimen-
sionless diffusivity of the liquid as a function of the saturation S and j(S) is
the saturation-dependent capillary pressure. This functional dependence
may make the equations highly nonlinear.
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4.3 Choosing the diffusivity

(4.3.1) To understand physical modelling of D(S), we look at a non-dimensional
saturation-dependent version of Darcy’s Law,

w̄s = −κ(S)

(
∂p̄s
∂z
−G

)
,

where p̄s = −j(S) is again, the capillary pressure in the porous medium.
Upon substitution we get

w̄s = κ(S)j′(S)
∂S

∂z
+ κ(S)G,

with prime in this context being a derivative with respect to S. Now by
the continuity equation we have

∂S

∂t
= −∂w̄s

∂z
= − ∂

∂z

(
κ(S)j′(s)

∂S

∂z
+ κ(S)G

)
.

To place this in the form of Richards’ equation, we define the effective
diffusivity as

D(S) = −κ(S)j′(S).

Therefore, an accurate model of the diffusivity is achieved by an accu-
rate construction of the permeability and capillary pressure as they de-
pend on S. When a region is fully saturated, the constituents should
move via Darcy’s law and so the permeability should be constant (non-
dimensionally κ(1) = 1). Conversely, when the region is void, there should
be no natural motion of the particles and hence κ(0) = 0 [15]. For this
reason, much of the literature and engineering use a power law fit for per-
meability known as a Corey-type [4, 5]. We follow this scheme and take
κ(S) = S3.

(4.3.2) There are two important physical mechanisms when constructing the cap-
illary pressure j(S). Firstly, when the saturation goes to zero, there is an
infinite suction pressure and so we need j(S) to diverge there. Secondly,
when the region is fully saturated there are no longer any surface tension
effects that would act to fill the pores (since they already are completely
filled) so the capillary pressure must vanish. Therefore, capillary pressure
models usually take the form, j(S) = (1 − Sα)S−1/α with α > 0 [15].
Without loss of generality, we take α = 4 to represent a typical geophysi-
cal porous medium. We differentiate our capillary pressure and multiply
it by our permeability to get,

D(S) =
1

4
S7/4

(
1 + 15S4

)
. (43)
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4.4 1D Model: Boundary conditions

(4.4.1) On the liquid-air boundary z = h1(t), the kinematic boundary condition
relates the motion of h1(t) to the flow into the porous medium and the
evaporation of the droplet into the air. The dynamic boundary condi-
tion is continuity of pressure. The dimensionless kinematic and dynamic
boundary conditions read

dh1
dt

= φw − Tsat
Tevap

, (44)

p = ptop, (45)

where
Tsat =

µφH2

Pck
, Tevap =

ρH

E
, (46)

are dimensionless time scales for saturation into the porous medium and
vapourization into the air. These time scales are equivalent to the ones
derived in the two-region model. The pressure ptop is the pressure at the
liquid-air boundary. This can be taken to be atmospheric pressure or, in a
very simplified case, a combination of atmospheric pressure and an impact
pressure resulting from the droplet landing on the porous medium. It is
this pressure which represents the impact force of the droplet leading to
the creation of a three-zone model.

(4.4.2) In high porosity and permeability materials such as sand, the time scale
Tsat associated with the absorption of a chemical weapons agent is much
shorter than the time scale associated with evaporation Tevap. Conse-
quently for droplets impacting sand, the liquid will be absorbed before
it has a chance to evaporate. Conversely for less porous and permeable
materials such as concrete the time scales associate with absorption and
evaporation can be of the same size, indicating that a significant propor-
tion of a droplet may evaporate before infiltration.

(4.4.3) On the liquid-substrate boundary z = 0 there is continuity of pressure and
velocity

p = p̄d, (47)
w = w̄d. (48)

On the fully-partially saturated boundary z = h2(t), the dynamic bound-
ary condition is continuity of pressure and the kinematic boundary condi-
tion states that the boundary advances at a rate relative to the velocities
of the fluid in the fully and partially saturated regions

p̄d = p̄s, (49)
dh2
dt

= w̄d − w̄s. (50)
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On the partially saturated-unsaturated boundary z = h3(t), the kinematic
boundary condition states that the boundary advances with the flow. We
also have that the saturation is zero there,

dh3
dt

= w̄s, (51)

S = 0. (52)

4.5 Analysis and discussion

(4.5.1) From Table 1 we have, to leading order in G, the pressure in the droplet
is constant and equal to the pressure at the free surface, p ≡ ptop. The
pressure in the Darcy region is then given by

p̄d = ptop

(
1− z

h2(t)

)
, (53)

where the fact that j(S = 1) = 0 has been used, i.e., there is no capillary
pressure at the top of the partially-saturated region. Using this expression,
the velocity in the Darcy region can be found and this velocity is, in fact,
equal to the velocity of the fluid in the droplet via (36). In particular,

w ≡ w̄d = ptop/h2(t). (54)

This solution can be used to construct an expression for the thickness of
the droplet, namely

h1(t) = 1 + φptop

∫ t

0

dξ

h2(ξ)
− Tsat

Tevap
t. (55)

However, to close this expression, a functional form for h2 must be ob-
tained.

(4.5.2) From these expressions it can be seen that the pressure gradient that exists
between the droplet and the bottom of the Darcy region is due solely
to the pressure at the drop of the droplet, ptop. Thus, if this pressure
vanishes then there is nothing to drive liquid from the droplet into the
porous medium and the Darcy region cannot grow. Furthermore, if a
fully-saturated Darcy region does not exist initially and if there is no
additional pressure at the top of the droplet, then this Darcy region is not
likely to come into existence at all. This is a significant result since we
postulated the creation of a third region was dependent on an impact force
which is effectively ptop. Therefore, if ptop = 0 then the above two-zone
model will provide an adequate mathematical description of the situation.
In what follows below we will assume that ptop is not equal to zero so that
the Darcy region does exist.
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(4.5.3) The remainder of the problem amounts to obtaining expressions for the
saturation S in the partially-saturated region and determining the bound-
aries of the regions, h2 and h3. This can, in principle, be obtained by
seeking a similarity solution to the problem in the partially-saturated re-
gion. That is, we write η = z/h2(t) so that S(z, t) = f(η), and moreover,
we let h3(t) = λh2(t) for some λ that must be determined. For the system
to be similar it follows that h2(t) = −

√
2Λt where Λ is given by

Λ = ptop +D(1)f ′(1), (56)

with the prime denoting differentiation with respect to η. Note that this
implies that h3(t) ∝ t1/2, which is identical to what is found in the two-
zone model.

(4.5.4) Under this similarity transformation, Richards’ equation becomes

Ληf ′ + (D(f)f ′)′ = 0 (57)

subject to the conditions f(1) = 1 and f(λ) = 0, where the constant λ is
given implicitly by

λΛ = −D(0)f ′(λ) (58)

via (51). Note that although D(0) = 0, we expect f ′(λ)→ −∞ in such a
way that the product of these two values is equal to a finite and nonzero
value. Moreover, by integrating (57) over the domain and using integration
by parts, this expression can be replaced by

λ =
ptop

Λ
− 2−

∫ λ

1

f(η) dη, (59)

which is more advantageous to use when solving this problem numerically.
Having determined λ and hence Λ, we would have a closed expression for
the evolution of the droplet,

h1(t) = 1− φptop

√
2t

Λ
− Tsat

Tevap
t. (60)

Table 2: Numerically computed values of Λ and λ for different values of ptop when
the diffusivity is given by (43).

ptop Λ λ
1/3 4.52× 10−2 3.38
1/2 8.29× 10−2 2.65
1 2.12× 10−1 1.88
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Figure 11: Saturation profiles for different values of ptop and for the diffusivity
given in (43). See text for details of the calculation.

(4.5.5) Obtaining analytical expressions for the remaining quantities was not pos-
sible so numerical methods were used to approximate them. In particular,
Richards’ equation (57) was discretized using finite differences and solved
in conjunction with (56) and (59). The diffusivity given in (43) was used
in the computations. The results for different values of ptop can be found
in Table 2 and in Figure 11. The results indicate that as ptop increases,
the growth rate of the fully-saturated region increases, while the growth
rate and the width of the partially-saturated region decreases.

5 Evaporation of droplets in a porous media

5.1 Evaporation from the surface

(5.1.1) Once the drop is fully absorbed in the porous medium the saturation S at
the surface will begin to decrease as the fluid spreads through the medium.
We model the effect of evaporation at this surface by assuming that there
is a flux qevap of fluid out of the medium that is proportional to the local
saturation S(0, t),

−D0D(S)
∂S

∂z
= qevap = −ES at z = 0.

(5.1.2) The saturation S satisfies Richards’ equation as in section 3, and again
we take D(S) = (n/2)Sn[1 − Sn/(n + 1)]. One-dimensional numerical
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solutions of this equation at a given time for different evaporation rates E
are shown in figure 12. This figure shows that evaporative loss from the
surface acts both to reduce the volume of fluid in the porous medium and
to slow the rate at which the saturation front advances. Thus, enhancing
the evaporation rate at the surface can act to limit the volume of porous
medium that is contaminated by fluid. We should note that evaporation
is a complex process, which is critically dependent on ambient conditions:
thus the observations made here give only a qualitative description of the
effect of evaporation.
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E = 10-4
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z

S

Figure 12: Numerical solutions of Richards’ equation for n = 2 after the drop
has been fully absorbed, showing the effects of evaporation from the surface
z = 0 for different values of the scaled evaporation rate Ê = E/D0 after time
t = 5φ/D0.

5.2 A tentative model for evaporation from the bulk

(5.2.1) In addition to the evaporation through the surface of the porous medium,
in regions of partial saturation, the liquid can evaporate adding to the
gaseous phase at each point within the porous medium. To model this
effect, in addition to considering the evolution of the liquid within the
porous media, we must also consider the behaviour of the gas phase that
occupies the remainder of the pore space. Consequently equations gov-
erning the vapour density ρg must also be given to model this effect, as
well as equations for the degree of saturation s.

(5.2.2) At the top boundary z = 0, liquid can still evaporate through the surface
of the porous media (as in the previous section), and again the evaporation
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of liquid through the surface corresponds to a flux with the form

−D(S)
∂S

∂z
= −ÊS. (61)

At the surface of the porous media, if gas phase is free to mix with a much
larger rapidly circulating body of gas in the atmosphere which is otherwise
free of vapourized chemical weapons agents, then we can take ρg = 0.

(5.2.3) In the partially saturated region −H < z < 0, the conservation of liquid
and vapour are given by

φ
∂S

∂t
=

∂

∂z

[
D(S)

∂S

∂z

]
− ṁ

ρl
, (62a)

φ
∂

∂t
[(1− S) ρg] =

∂

∂z

[
(1− S)Dg

∂ρg
∂z

]
+ ṁ, (62b)

respectively, where the sink term ṁ, in the liquid conservation equation
represents the rate of evaporation of liquid, with an equivalent source term
contributing to the vapour phase. One possible way of modelling the rate
of evaporation is to assume that it is proportional to the difference between
the concentration of vapour in the gas ρg, and the concentration of vapour
in the gas at saturation ρg,sat.

(5.2.4) At the bottom of the partial saturation fringe at z = −H, the degree the
saturation S = 0, while the vapour density is continuous across the limit
of liquid infiltration.

(5.2.5) In the dry region z < −H, there is no liquid present so S = 0. However the
liquid vapour is still able to diffuse into this region driven by the vapour
concentration gradient. This can be modelled by a conservation law for
the mass of vapour with the form

φ
∂

∂t
[(1− s) ρg] =

∂

∂z

[
Dg

∂ρg
∂z

]
. (63)

(5.2.6) During the study group there was insufficient time to investigate liquid
evaporation within the partially saturated region any further. Additional
theoretical work is required to model the evaporation of a droplet within
a porous media and details of how this modelling could be approached are
given by Kaviany (1995) [15] and Bear and Bachmat (1990) [3].

6 Conclusions

6.1 Conclusions

(6.1.1) Droplet impacts onto porous media are complicated phenomena, which
are not fully understood. Depending on the parameters associated with
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a falling droplet and the substrate it impacts, a wide range of different
behaviours are possible, including splashing, spreading across the sub-
strate, impact pressure driven droplet infiltration, capillary driven droplet
infiltration and finally liquid evaporation. These processes occur across
a range of different time scales and this fact can be used to analyse the
different phases of a droplet impact and subsequent absorption.

(6.1.2) The initial behaviour of a liquid droplet that hits a porous media in a
droplet impact is very different to the behaviour of a liquid droplet that
is gently placed upon the surface of the porous media. In an impact, the
pressure generated in the liquid that results from the rapid deceleration
of a droplet as it hits a porous substrate is expected to generate a region
just below the impact site of the porous medium, whose pore spaces are
almost completely saturated by liquid from the droplet. The equivalent
fully saturated region beneath a droplet placed upon the surface of the
porous media is expect to be smaller, as initially only surface tension
exists to drive liquid into the pore spaces. Over longer time scales, the
liquid in the porous media is expected to gradually diffuse away from
the initial impact site, although the degree of saturation will fall as the
distance from the impact site increases.

(6.1.3) Evaporation of liquid can occur from (i) the droplet free-surface, (ii) the
surface of a saturated porous medium and (iii) the bulk of a partially sat-
urated porous medium. Liquid evaporation from the surface of a droplet
sitting on the surface of a porous media is particularly important for
relatively impermeable materials such as concrete, where the initial ab-
sorption of the droplet is comparatively slow. However, it is much less
relevant for droplets impacting sand, where the initial absorption is much
more rapid. Over a longer time (after the droplet has been absorbed),
liquid can evaporate from the surface of the porous media and also within
partially saturated regions within the porous media. Liquid evaporation
slows the spreading of liquid through the pore spaces as less liquid is avail-
able. Further investigation into models of liquid evaporation are required,
particularly in regions of partial saturation.

(6.1.4) Further experiments are needed, particularly in relation to the onset of
splashing and to capture the evolution of the liquid within the porous
media. High-speed photography of droplet impacts with a range of sub-
strates with surface roughness and porous materials would be particularly
valuable in understanding the initial droplet behaviour. In the first in-
stance these experiments could be conducted safely using water as its liq-
uid properties are close enough to the chemical weapons agents of interest
to further understanding of these complicated phenomena.
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6.2 Recommendations for future numerical investigation of
droplet impacts and infiltration into porous media

(6.2.1) DSTL are interested in large scale numerical simulations of droplet impact
with porous media. As an example of a possible approach they wish to
investigate, DSTL cited Reis et al. [24], who investigate the spreading
and infiltration of droplet impacts with porous media using the method
of marker particles. DSTL have also used a volume of fluid method to
perform their own preliminary investigations of these phenomena.

(6.2.2) Over the course of the week the study group was unable to perform their
own simulations of the full droplet impact problem. However, members
of the group have previously investigated a range of different problems
associated with droplet impacts using the volume of fluid method. The
study group noted that simulations of droplet impact with porous media
in the literature [24, 23] and conducted by DSTL, assumed a passive gas
phase within the simulation. This is equivalent of modelling the droplet
impact within a vacuum and under these assumptions, the liquid jets that
run along the surface of the substrate never lift off to trigger splashing and
the formation of micro-droplets. Liquid jets that run along the surface
of the body match experimental results of droplet impact conducted in
a vacuum [27], and further suggests that a non-passive gas phase is an
important factor in generating splashing.

(6.2.3) The study group recommends that if DSTL wish to investigate the possi-
bility of splashing (in addition to spreading and infiltration), within their
simulations of droplet impact, then a model with an active gas phase
should be used. Historically interface capturing numerical schemes such
as the volume of fluid method have been more successful at modelling a
liquid within a passive gas phase, while with an active gas phase, they
have tended to struggle if the difference between the initial gas and liquid
density is as large as that associated with air and water. This explains the
prominence of a passive gas phase in simulations of droplet impact. Given
the liquids that are of interest to DSTL, density differences equivalent to
those seen with air and water are to be expected (see §A.1). However,
recent use of more advanced linear solvers used in such schemes have en-
abled accurate front capturing volume of fluid methods to be developed
for cases with high density ratios. Such schemes are present within the
Gerris Flow solver [21] and OpenFOAM [9].

(6.2.4) Using a volume of fluid method it is difficult to model partial saturation
of the porous media, as a volume of fluid method is designed to capture
the interface to a region that is fully saturated. DSTL have experimented
with using volume of fluid methods within a porous media, by explicitly
modelling the liquid infiltration into each individual pore space. DSTL
make this calculation with using an idealized porous media, whose pore
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spaces are the volumes separating an array of packed spheres. An example
of such a porous media and a snapshot of the fluid infiltrating through it
is shown in figure 13. Explicit calculations such as this are enormously
computationally expensive, and while the voids between packed spheres
may represent some porous media, the behaviour of liquids in many mate-
rials (for instance materials with anisotropic porosity and permeability),
will be poorly represented by such an approach.

Figure 13: Existing DSTL simulations of liquid infiltration into a porous medium.

(6.2.5) The study group envisages an alternative approach where only the ini-
tial touchdown, spreading and impact pressure driven infiltration phase
is captured using a volume of fluid method. After this initial phase the
subsequent capillary suction driven phase of the liquid infiltration would
be modelled using Richards’ equation. This would calculate the average
degree of saturation across a local collection of pore spaces, rather than
the explicit position of the liquid interface within each pore space. To-
gether with a library of hydraulic conductivities for a range of different
porous media, this can provide higher fidelity to the expected liquid be-
haviour (compared to an array of packed spheres), at a massively reduced
computational cost.

(6.2.6) Although the study group focussed primarily on one-dimensional models
of capillary suction driven liquid infiltration, the extension of Richards’
equation to three-spatial dimensions is easily achieved. In three spatial
dimensions more complicated models for the droplet behaviour on the
surface are required. However, models based upon the thin film equations
could be profitably be used here and could readily incorporate features
such the pressure generated by surface tension and the droplet interface
curvature. The development of such models is significantly aided by ex-
perimental results of droplets infiltrating into sand, which show that the
position of the contact line between droplet, porous medium and air does
not change over time, while the contact angle decreases to allow the vol-
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ume of the liquid in the droplet to fall [7]. While beyond the scope of
the study group, coupled models based on the thin film equations for the
droplet behaviour above the porous media and Richards’ equation for the
saturation evolution within the porous media, would be comparatively
easy to develop and should provide a fruitful technique for future investi-
gations of droplet infiltration into porous media.

A Appendix

A.1 Properties of chemical weapons agents

Table 3: Properties of chemical weapons agents. Values obtained from Augerson
(2000) [2].

Property Symbol Sarin Sulphur Mustard VX Units
Density ρ 1102 1270 1012.4 kgm−3
Viscosity µ 0.00139 0.005175 0.0123 Pa s
Surface tension σ 0.026 0.042 0.032 Pam−1

A.2 Properties of porous media

Table 4: Representative values for the properties of porous media. Values obtained
from Navaz et al. (2008) [19].

Substrate Porosity Permeability
φ K (m2)

High-silica, medium-grain sand 0.44 6.05× 10−11

Fine sand 0.37 2.30× 10−12

Glass beads 0.28 4.80× 10−13

Ceramic tile 0.26 5.00× 10−14

Concrete 0.25 5− 30× 10−15
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