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Executive Summary

A SCUBA diver would like to know his/her position underwater, rela-
tive to the dive start position. GPS is not an option as the signals do
not travel underwater. Transponder/pinger systems have already been
developed, but these are expensive and require configuration by the boat
operator and the diver.

A simple standalone affordable dead-reckoning system is needed, but it
is inherently difficult to determine the diver’s movements. The system
needs to be very cheap, so that price is not a barrier to its deployment.
The system needs to be small.

The Study Group investigated the possibility of such a system making
use of cheaply available accelerometer, gyroscope and magnetic field
sensors, similar to those included in many modern smart phones.

The Study Group captured data using an Android device strapped to
a skateboard to simulate the type of movements a diver might make
underwater. Different modes of movement were evident from filtered
versions of the sensor outputs, so indicating that a pedometry based
solution ought to be feasible. The Study Group then formulated and
investigated the feasibility of a generic dead-reckoning system. Although
sensors provide more data than is strictly necessary, significant errors
arise from imperfect calibration and from noise for which the Study
Group derived estimates of the resulting drift in position over time.
The accuracy of practical numerical integration schemes in the context
of rotating frames was investigated, and a Kalman filter was used to
reduce error in the orientation data by combining accelerometer and
gyroscopic data.
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1 Introduction

1.1 Background and scope

(1.1.1) A SCUBA diver would like to know his/her position underwater, relative
to the dive start position. This requires a gyro system optimised for
underwater use, utilising low cost hardware sensor inputs. GPS is not
an option as the signals do not travel underwater. Transponder/pinger
systems have already been developed, but these are expensive and require
configuration by the boat operator and the diver.

(1.1.2) A simple standalone affordable dead-reckoning system is needed, but it is
inherently tricky to determine the diver’s movements. The system needs
to be very cheap, so that price is not a barrier to its deployment. The
system needs to be small.

(1.1.3) The study group sought to address the following questions: how should
the position be calculated and what accuracy can be obtained? This led
to considerations of which characteristics of motion are important.

(1.1.4) A further consideration was to think about the likely sources of errors and
deviations from idealised behaviour. Some technical information on these
device outputs is provided by Anscamobile, who market the Corona SDK
for mobile platform development [2]. Some basic information on MEMS
type accelerometers, including the likely source of error is covered by a
Texas Instruments briefing note [3].

(1.1.5) As a practical focus for the study group, a modest land–based solution
was implemented in an android app. As accelerometers and compasses
are standard in so many phone/tablet models, this was deemed to be a
suitable test platform for practical ideas.

2 Understanding the available data

2.1 Feasibility of using data from an Android device

(2.1.1) To establish the feasibility of the proposed methods, an Android device
was pushed along the floor on a skateboard and recorded data for the
acceleration a and angular velocity ω. This data was extracted from the
device and was used as input data to solve equations (1) to (3) numerically
using MATLAB. Results are shown in figures 1 and 2, and provide an
encouraging demonstration of the feasibility of the methods.

(2.1.2) The device was placed flat on the skateboard, with the z axis aligned
approximately downwards. The movement along x and y axes is shown,
with initial condition (0,0). The units are normalised, and we consider
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Figure 1: Skateboard moving approximately in a straight line.

Figure 2: Skateboard moving along a corridor.

only qualitative features of the calculation. In Figure 2, x and y are
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approximately aligned to the corridor width and length respectively, while
in Figure 1, the device is placed approximately at a 45 degree angle to
the corridor length. Both figures show roughly straight lines as expected,
with Figure 2 demonstrating more deviation after a longer period of time.

2.2 Movement scenarios and data captured

(2.2.1) In order to generate realistic data for analysis, an iPhone app was used to
log data streams from the iPhone’s inertial sensors, namely the accelerom-
eters, gyroscopes and magnetometer. A number of different motion sce-
narios were used, with the device attached to a skateboard; the device
hand–held while walking; and the device at rest on the window sill of the
building (in order to estimate background noise in the sensors).

(2.2.2) With the iPhone attached to the skateboard, two sub-scenarios were used:
the skateboard moved with an obvious push and allowed to decelerate
noticeably between pushing actions and the skateboard moved at a near
constant speed.

(2.2.3) In total, three data sets were captured for the skateboard with each of
a pushing motion, the walking experiment, and the iPhone at rest. Two
data sets were captured for the skateboard at a (near) constant speed.

2.3 Making sense of the data

(2.3.1) The strongest signal in the captured accelerometer data was that due to
gravity. This signal may play an important role in determining an absolute
reference frame, but for the study group we considered it a nuisance signal.
A bandpass filter with a characteristic shown in Figure 3 was applied to
the three accelerometer axis signals. The characteristics of this filter were
that the passband be between 0.5Hz and 4Hz. This was chosen on the basis
that anything below 0.5Hz was likely to be dominated by the gravitational
signal and that anything above 4Hz might well be noise.

(2.3.2) An example application of this filter to one of the skateboard pushing
datasets resulted in the axial accelerations in Figure 4. Compass heading
information from the magnetometer is included in this figure also (al-
though this signal has not been filtered). As can be seen, each of the
accelerometer readings is centred around zero; this is to be expected as
the filter has suppressed the constant signals in the accelerometer readings.
One can also see impulses in the acceleration signals, as might be expected
by the nature of the scenario (the skateboard being pushed and allowed
to slow down noticeably between pushes). The acceleration peaks in both
the positive and negative directions indicate maximum acceleration and
deceleration.
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Figure 3: The pass band response, stopband response and phase
response of the bandpass filter used to suppress gravity and higher
frequency noise. Frequency is in Hz.

(2.3.3) Next we considered the magnitude of the accelerations, i.e.

|a| =
√
a2x + a2y + a2z.

The results of this are in Figure 5 for all 11 datasets captured, although
their number is obscured by noise in the data. Colour coding is used to
distinguish static (green), walking (red), skateboard being pushed (blue)
and skateboard at a near-constant speed (black).

(2.3.4) In order to see these magnitudes more clearly, a low pass filter with a cut-
off of around 0.5Hz was applied to the magnitude outputs. The response
of this filter is shown in Figure 6. The resulting smoothed magnitudes are
shown in Figure 7.
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Figure 4: Accelerometer readings in the x, y and z directions, filtered
with the bandpass filtered described in Figure 3. Note the different
scale on the z-acceleration component. Heading information from the
magnetometer is also included, showing how directional information
changed as the orientation of the device changed throughout the data
capture experiment.

2.4 Counter-intuitive filtering artefacts

(2.4.1) The filtering adds some artefacts that may make the acceleration plots of
Figures 5 and 7 seem incorrect. In particular, the acceleration does not hit
the baseline value (i.e. the ‘at rest’ acceleration magnitude corresponding
to a = 0) periodically, as might be expected for the push scenarios1. This
is due to the removal of high-frequency terms in the filtering. Refer back to
Figure 4 to see that the accelerations do indeed oscillate between positive
and negative values.

1Bear in mind that pushing the skateboard implies that a must periodically change sign.
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Figure 5: Accelerometer magnitudes for each of the 11 data sets
captured (overlayed and partially obscured in noise), following pre-
filtering of axial components using the bandpass filter of Figure 3.
Colour coding is used to distinguish static (green), walking (red),
skateboard being pushed (blue) and skateboard at a near-constant
speed (black).

(2.4.2) Both the lowpass and bandpass filters are 100 point FIR filters, designed
using R’s fir1 command. The sampling rate of the iPhone accelerome-
ters is around 15Hz. Therefore it can be readily seen that the extended
transient spikes in the first 10-15 seconds are caused by these filter settle
times.

2.5 Towards a V1.0 dead-reckoning system

(2.5.1) Each of the transportation modes of Figure 7 can be distinguished by eye.
In particular, there is a clear oscillation in the blue signals corresponding
to the pushing action on the skateboard (blue); the near-constant sce-
nario on the skateboard (black) is not quite as constant as walking (red),
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Figure 6: Lowpass filter with a cut-off of 0.5Hz applied to the ac-
celeration magnitudes, chosen to display the coarse features of the
motion more clearly.

which might be expected; there is a consistent baseline in the static signal
(green).

(2.5.2) These observations suggest that different modes of movement can be dis-
tinguished in the accelerometer readings using fairly simple techniques.
As a minimum, it should be possible to estimate diver speeds using ac-
celerometer readings and to combine this with magnetometer readings to
develop a dead-reckoning system based on pedometery principles.
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Figure 7: Smoothed accelerometer magnitudes for each of the eleven
data sets captured (see text for details). Colour coding is used to dis-
tinguish static (green), walking (red), skateboard being pushed (blue)
and skateboard at a near-constant speed (black). Time is in seconds.

3 Coordinate frames and equations of motion

3.1 Reference frames, measurements and objectives

(3.1.1) The problem has two frames of reference: the fixed (global) reference
frame for known earth-based quantities such as the magnetic field vector
and the gravitational acceleration vector; and the diver’s reference frame
for quantities measured by a device attached to the diver.

(3.1.2) The two frames of reference are depicted in Figure 8. A device orientation
matrix relates the coordinates of a point expressed in the diver’s reference
frame to its coordinates in the global reference frame.

(3.1.3) In the diver’s local coordinate frame, the device can measure the following
quantities: a(t) – acceleration vector from accelerometers; ω(t) – angular

8
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Figure 8: The fixed and diver reference frames and their notation.

velocity vector from gyroscopes; b(t) – magnetic field vector from sensor;
and h(t) – depth from pressure transducer.

(3.1.4) The constant magnetic field of the earth B and gravity −gẐ are fixed in
the global coordinate system.

(3.1.5) The objective is to estimate the following quantities: X̂(t) – diver position
in global coordinate system; U(t) – diver velocity in global coordinate
system; and M (t) – device orientation matrix (orthogonal rotation).

3.2 Formal mathematical relationships

(3.2.1) In an idealised world, this problem may be solved by integrating the rate
equations for the device orientation matrix M , and for the diver velocity
U and position X̂ in the global reference frame, using the accelerometer
readings a and gyro readings ω as input vectors:

Ṁ = −ω ∧M M (0) = I (1)

U̇ = MT ·a + gẐ U (0) = 0 (2)

Ẋ = U X(0) = 0 (3)

9
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(3.2.2) Two additional equations relate data (magnetic field and depth) in the
diver’s frame to the corresponding data in the global frame:

MT · b = B (4)

X · Ẑ = −h. (5)

(3.2.3) A reasonable plan then is to numerically integrate (1-3) and to use (4-5)
to correct as much of the noise and drift errors as possible. A scheme
for using the magnetometer information to correct errors in the rotation
matrix is outlined in Appendix C.

4 Theoretical treatment of errors

4.1 Noise and the integration of the circular motion

(4.1.1) Noise in the measured data can lead to the build up of error during the
integration of the equations of motion. To gain insight into this effect, a
simple case of circular motion, expressed in the notation of the global and
diver reference frames was defined as follows.

(4.1.2) The initial conditions of motion were

X(0) = (1, 0, 0), (6)

U(0) = (0, 1, 0), (7)

M(0) = I3×3, (8)

and random noise was added to the constant angular velocity and accel-
eration that define circular motion:

ω(t) = (0, 0, 1) + ε1n(t), (9)

a(t) = (−1, 0, 0) + ε2m(t). (10)

Here, n(t) and m(t) are vectors whose entries are random numbers drawn
from a standard normal distribution, N(0, 1).

(4.1.3) The above equations were numerically integrated in MATLAB, for four
different regimes of added noise; the results of this investigation are shown
in Figure 9. They show how random noise introduces systematic drift into
the integrated solutions of the equations of motion. .

4.2 Estimating the drift in position

(4.2.1) An analytical estimate for the drift in position arising from random noise
in the acceleration data can be obtained for linear motion as follows. The
analysis is a summary (in one dimension of linear motion) of the more
detailed analysis given in Appendix A.

10
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Figure 9: Trajectories showing the drift caused by the effect of ran-
dom noise upon the numerical integration of the circular motion equa-
tions (9) and (10).

(4.2.2) Accelerometer data includes random noise, with an amplitude that de-
pends on the sampling interval δt. If we choose to model errors in the
acceleration a at each time-step as i.i.d. random variables, then

ân ∼
ε

δt1/2
N(0, 1) ≡ N

(
0,
ε2

δt

)
Typically, for the sensors used in the Study Group, ε = 10−3 m s−2 Hz−1/2 [4].

(4.2.3) We integrate ẍ = a using a simple Euler scheme to find cumulative errors
in x at time t = nδt:

x̂n = δt2
n∑
j=1

j ân−j ⇒ x̂n ∼ N

(
0, ε2δt3

n(n+ 1)(2n+ 1)

6

)
So for large n, the standard deviation of position error is approximately

σ =
εt3/2√

3
∝ t3/2

which grows with time. For ε = 10−3 this gives σ ≈ 45 m after 30 minutes,
and σ ≈ 125 m after 1 hour, so illustrating the significance of noise.

11
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(4.2.4) The Study Group did not complete an analysis of the effects of angular ve-
locity measurement noise upon the estimation of orientation. The analysis
would proceed along similar lines to that above and in Appendix A.

4.3 Numerical integration schemes and their effects

(4.3.1) In a real time implementation, MATLAB integration routines (e.g. ode45)
cannot be used, rather low-order and fast integration schemes must be
explicitly coded and executed in real-time software. An understanding of
how best to implement such schemes and of their accuracy and execution
speed is required. The Study Group examined the performance of first and
second order in time schemes, and the management of error accumulation
in the context of circular motion.

(4.3.2) The Study Group proposed a similar approach to that proposed by Wood-
man (2007) in [4], seeking to compute C(t) = C(0) exp(

∫ t
0

Ω(τ)dτ) where

C = MT and Ω is the skew symmetric form of the angular rate vector ω.

(4.3.3) Given a numerical time step δt, this matrix can be approximated, as
proposed in [4], by using σ = δt|ω| and

C(t+ δt) = C(t)

(
I +

sinσ

σ
δtΩ +

1− cosσ

σ2
(δt)2Ω2

)
,

with the angular velocity values corresponding to the interval (t, t+ δt).

(4.3.4) Then, we can compute an approximation of the velocity and trajectory by
using the backward Euler scheme (first order accurate in time), as in [4]
or use the following second-order accurate time discretization scheme:

U(δt) = U(0) +
2δt

3
(C ∗ a(δt)− g) +

δt

3
(C ∗ a(0)− g) ,

X(δt) = X(0) +
2δt

3
U(δt) +

δt

3
U(0),

and then,

U(t+ δt) =
4

3
U(t)− 1

3
U(t− δt) +

2δt

3
(C ∗ a(t+ δt)− g) ,

X(t+ δt) =
4

3
X(t)− 1

3
X(t− δt) +

2δt

3
U(t+ δt).

(4.3.5) This is a well-known scheme that is used in many applied numerical works
(see, for instance, [5]). Results for a circular trajectory are shown in
Figure 10. This scheme has also been found to work for an ellipse.

12
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Figure 10: Top: Results for method described in Woodman
(2007) [4] (order 1). Bottom: Results for second order method de-
scribed above. In both cases we consider time steps 0.1 and 0.01.

(4.3.6) Some caution is required in using the integration scheme in Woodman
(2007) [4]. While dC

dt
= CΩ (i.e. equation (33) in Woodman (2007)) is

correct, C(t) = C(0) exp(
∫ t
0

Ω(τ)dτ) (i.e equation (34) in [4]) is incorrect
because 3D rotations do not commute. For example, if Ω = Ω1 for an
interval ∆1t, followed by Ω = Ω2 for an interval ∆t2, then that has a
different rotation matrix from that obtained had Ω = Ω2 for ∆t2 been
followed by Ω = Ω1 for ∆t1. However, the exponential formula would
give the same result both ways because integral

∫ t
0
Ω(τ)dτ would be the

same either way. Even the equation C(t + δt) = C(t) exp(
∫ t+δt
t

Ω(τ)dτ)
(i.e equation (35) in [4]) would seem to have errors of the order of δt2

because of non-commutativity, so reducing equation (41) of [4] to being
no better than the forward-Euler formula C(t+ δt) = C(t)(1 + Ω(t)δt).

(4.3.7) The Study Group reviewed the quaternionic representation of 3-D rota-
tions as means of accommodating non-commutativity and of correcting
the rotation matrix to ensure its orthogonality during the course of nu-
merical integration. The quaternionic representation is briefly described
in Appendix B. The Study Group did not have time to implement the
quaternionic scheme, but it should be implemented and tested in subse-
quent work.

13
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5 Improving the estimates of the motion: corre-

lation and filtering

5.1 Kalman filtering of compass and gyroscope data

(5.1.1) Determining an accurate orientation of the diver with respect to the global
coordinate system is just as important as determining accurately the mag-
nitudes of the displacements. If the displacements of the diver are in the
wrong direction, this will negate the utility of the navigation device.

(5.1.2) There are different and independent measurements available that are able
to provide information about the orientation of the diver, including: the
gyroscope, which provides angular velocity ω; the accelerometer, which
provides orientation relative to the direction of gravity g; and the compass,
which provides orientation relative to the direction of the earth’s magnetic
field b.

(5.1.3) All these device measurements contain some amount of error. We propose
to use a Kalman filter to combine all three measurements and get one
optimal estimate of the three angles φ, θ and ψ that determine the rotation
matrix R.

(5.1.4) The measured gravity vector can be obtained by low pass filtering the
acceleration readings to filter out the non-gravity components. The same
idea can be applied to calculate the rotation matrix for the measured
magnetic force vector and the known magnetic field vector. Once the
rotation matrix is known then the calculation of the three angles φ, θ and
ψ is trivial.

(5.1.5) The Kalman filter matrices are derived in a similar way to [6]. The cur-
rently implemented Kalman filter is a discrete and linear Kalman filter.
This works well for the 1D case, however if we wanted to implement the
full 3D system we would prefer an extended Kalman filter to better handle
the nonlinearity in the equations. For a good introduction to the Kalman
filter see [7]. The only difference between our method and the method
proposed by [6] is (11). Here we used a finite difference to estimate the
time derivative.

x(t+ 1) =

[
1 ∆t
0 1

]
x(t) + v(t) (11)

(5.1.6) Some interesting plots showing how the Kalman filter improves the esti-
mates of the diver orientation by combining compass and angular velocity
measurements can be found in Figures 11 and 12.

14
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Figure 11: First example showing how the Kalman filter improves
the estimates of the diver orientation by combining compass and an-
gular velocity measurements.

6 Summary

6.1 Summary

(6.1.1) In this Study Group, we captured data using an Android device strapped
to a skateboard to simulate the type of movements a diver might make un-
derwater. Different modes of movement (non-movement, constant speed,
impulsive movement) are evident from filtered versions of the sensor out-
puts, so indicating that a pedometry based solution ought to be feasible.

(6.1.2) We also investigated the feasibility of a more generic dead-reckoning sys-
tem. Though sensors provide more data than is strictly necessary, noise
and imperfect calibration lead to significant errors. Owing to the nature of
the problem, these errors accumulate over time leading to significant drift
errors over the time scales of interest. Using estimates of the white noise
produced by the accelerometers we derived estimates of the drift in posi-
tion over time. The accuracy of practical numerical integration schemes
was also investigated. By combining accelerometer and gyroscopic data we
showed how a Kalman filter can be used to reduce error in the orientation
data.

15
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Figure 12: Second example showing how the Kalman filter improves
the estimates of the diver orientation by combining compass and an-
gular velocity measurements.

A An estimate of position drift for linear motion

A.1 One–dimensional case

(A.1.1) Consider a one-dimensional problem in which the device measures the
acceleration ai at intervals of δt with independent normally distributed
random errors

âi ∼
ε

δt1/2
N(0, 1) ≡ N(0, ε2/δt) (12)

The dependence on δt is a known property of the device. (We assume that
this occurs because the sensor contains some internal averaging between
polling times.)

(A.1.2) Now consider a simple Euler integration scheme, in which we write:

ui+1/2 = ui−1/2 + δt ai , (13)

xi+1 = xi + δt ui+1/2 , (14)

starting from exact initial conditions x0 = u−1/2 = 0. Then it is easy to

16
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see that

un+1/2 = δt
n∑
i=0

ai , (15)

xn+1 = δt2
n∑
i=0

(n+ 1− i)ai , (16)

Hence the error in each position is given by

x̂n = δt2
n−1∑
i=0

(n− i)âi = δt2
n∑
j=1

j ân−j . (17)

(A.1.3) Now from (12) we have that

δt2j ân−j ∼ N(0, ε2δt3j2) (18)

Since the âi’s are independent, on summing we add the variances, and so
obtain

x̂n ∼ N
(

0, ε2δt3
∑n

j=1 j
2
)
≡ N

(
0, 1

6
ε2δt3n(n+ 1)(2n+ 1)

)
. (19)

(A.1.4) So for large n, the distribution is approximately

x̂n ∼ N
(

0, 1
3
ε2t3
)

(20)

where t = nδt is the elapsed time. So the standard deviation σ(t) of the
error in position at time t is given by

σ(t) ≈ ε t3/2√
3
, (21)

independent of δt.

(A.1.5) From [4] typical errors on the sensor are

ε ≈ 0.001 ms−2Hz−1/2 (22)

If this is the case, then after an hour σ will be around 125 m. After two
hours, this will rise to over 350 m

A.2 Three–dimensional case

(A.2.1) In three dimensions, there will be three independent errors aligned with
the coordinate axes, each being distributed as above:

x̂, ŷ, ẑ ∼ N
(

0, 1
3
ε2t3
)

(23)
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(A.2.2) The absolute error r̂ =
√
x̂2 + ŷ2 + ẑ2 is then a Chi distribution

r̂ ∼ χ
(

1√
3
εt3/2

)
, (24)

and its expected value and standard deviation are

µr̂ = 2

√
2

3π
εt3/2 , σr̂ =

√
1− 8

3π
εt3/2 . (25)

(A.2.3) With ε = 0.001 ms−2Hz−1/2 as above, the values of µr̂ after one and two
hours are roughly 200 m and 560 m respectively.

(A.2.4) A similar calculation could be done to estimate likely errors in orientation,
though the form would be more complicated.

B Quaternionic representation

B.1 Theory

(B.1.1) Quaternionic representations for rotations are well known to help reduce
errors that accumulate during numerical calculations. Rather than hav-
ing to re-orthogonalise rotation matrices as rounding errors creep in on
repeated multiplications, the quaternion representing the combination of
rotations needs to be kept unit length.

B.2 Implementation

(B.2.1) We denote the quaternion q = q0 + q1i+ q2j+ q3k by the more convenient
(for our application) notation (q0,p). Quaternions add in the obvious
manner, qc = (qo,−p), q−1 = (q0,−p)/qqc and for two quaternions q1 =
(a1, b1) and q2 = (a2, b2) multiplication looks like

q1q2 = (a1a2 − b1.b2, a1b2 + a2b1 + b1 × b2).

(B.2.2) Taking the unit quaternion q = (cos(θ/2), sin(θ/2)p̂) and the vector v =
(0,w), the product v′ = qvq−1 gives (0,w′) where in R3 the vector w′

is the vector w rotated about the axis p̂ through angle θ.

(B.2.3) So now if W (t) = (0,ω(t)) then

dq

dt
=

1

2
W (t)q(t)

(0, U̇ ) = q−1(t)(0,a)q + (0, gẐ)

(0, Ẋ) = (0,U)

(B.2.4) When integrating the vector q has to be renormalised every step, a dis-
cussion on this may be found in [1].

18
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C Correction of the rotation matrix using head-

ing information

C.1 Outline of approach

(C.1.1) A scheme for correction to orientation to ensure that (4) holds is now
outlined.

(C.1.2) Recall that B is the magnetic field in the global coordinate system and b
is the field measured by the magnetic field sensor at any given time. Note
that B is constant, and is known from how the global system is defined
relative to the earth when the diver begins his dive. Also recall that M
is the rotation matrix describing the calculated orientation of the diver at
any particular time.

(C.1.3) We now define b′ to be the magnetic field we would expect to measure
given the global field B and the assumed orientation M , i.e.

b′ = M ·B . (26)

(C.1.4) In general, b will not be exactly equal to b′, because of errors in both the
measured b and drift errors in the computed orientation M . We aim to
fix the discrepency by adjusting M so that the measured field matches
that implied by the orientation.

(C.1.5) In other words, we wish to find a new orientation matrix M ′, which is
close to the original M , but which satisfies

b = M ′ ·B . (27)

C.2 Implementation

(C.2.1) We first normalise the measured magnetic field b so that |b| = |B|. Since
M is orthogonal by definition, we already have |b′| = |B|.

(C.2.2) Let M ′ = Q ·M for some Q. Then we must find an orthogonal Q such
that,

b = (Q ·M ) ·B = Q · b′ (28)

i.e. Q should be a rotation that takes b′ to b. For M ′ to be close to M
we want Q to be close to the identity I.

(C.2.3) There are many rotations Q that will satisfy (28), but we shall take the
one with the smallest angle, so that it is closest to the idenity. This will
be rotation normal to the plane containing b′ and b, i.e. one about the
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axis

n̂ =
b′ ∧ b

|b′ ∧ b|
. (29)

(C.2.4) The required rotation angle θ is given by the angle between the vectors b′

and b, so we have

cos θ =
b′ · b
B2 , (30)

n̂ sin θ =
b′ ∧ b

B2 , (31)

since |b| = |b′| = |B|.

(C.2.5) The rotation matrix for a rotation of angle θ about an axis n̂ is given by

Q = I + (1− cos θ)n̂n̂ + (n̂ ∧ I) sin θ . (32)

Hence we have

Q =
(b′ · b)I

B2 +

(
1− b′ · b

B2

)
(b′ ∧ b)(b′ ∧ b)

|b′ ∧ b|2
+

(b′ ∧ b) ∧ I

B2 . (33)

(C.2.6) This approach assumes that the dominant error is in M , and that the
measured magnetic field b is relatively error free. This may not be the
case in reality, so it may be preferable to not correct M completely, but
to only adjust it by a rotation of angle αθ for some fixed α ∈ (0, 1).
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