Jak działa algorytm gradientu prostego w uczeniu maszynowym?
Algorytm gradientu prostego polega na stopniowym poprawianiu parametrów modelu, aby zmniejszyć błąd w przewidywaniu odpowiedzi.…
Jak sieć neuronowa uczy się rozpoznawać wzorce – krok po kroku
Sieć neuronowa rozpoznaje wzorce, stopniowo dostosowując wagi połączeń między "neuronami" na podstawie przykładów, które otrzymuje.…
Jakie są podstawy statystyki potrzebne do machine learningu?
Podstawy statystyki potrzebne do machine learningu obejmują zrozumienie pojęć takich jak średnia, mediana, odchylenie standardowe…
Jakie działy matematyki są potrzebne do nauki AI?
Aby zacząć naukę sztucznej inteligencji, trzeba znać algebrę liniową, rachunek różniczkowy, prawdopodobieństwo i statystykę. To…
Czy trzeba znać matematykę żeby uczyć się sztucznej inteligencji?
Podstawowa znajomość matematyki znacznie ułatwia naukę sztucznej inteligencji, ale nie jest bezwzględnym wymogiem na samym…
Czym są funkcje aktywacji w sztucznej inteligencji?
Funkcje aktywacji pozwalają sieciom neuronowym lepiej rozumieć i przekształcać dane wejściowe. Dzięki nim sztuczna inteligencja…
Czym jest regresja liniowa w uczeniu maszynowym?
Regresja liniowa w uczeniu maszynowym to metoda przewidywania wartości liczbowych na podstawie jednej lub wielu…
Jakie wzory matematyczne są używane w sztucznej inteligencji?
Sztuczna inteligencja korzysta z matematyki na każdym etapie działania: to m.in. równania liniowe, funkcje aktywacji…
Na czym polega backpropagation w sieciach neuronowych?
Backpropagation to proces uczenia sieci neuronowej polegający na cofnięciu się przez warstwy modelu i obliczaniu,…
